All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.parallelism.inference.observers.BatchedInferenceObservable Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.parallelism.inference.observers;

import lombok.extern.slf4j.Slf4j;
import lombok.val;
import org.deeplearning4j.parallelism.inference.InferenceObservable;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.api.DataSetUtil;
import org.nd4j.linalg.exception.ND4JIllegalStateException;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.INDArrayIndex;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.primitives.Pair;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.locks.ReentrantReadWriteLock;

/**
 * This class holds reference input, and implements second use case: BATCHED inference
 *
 * @author [email protected]
 */
@Slf4j
public class BatchedInferenceObservable extends BasicInferenceObservable implements InferenceObservable {
    private List inputs = new ArrayList<>();
    private List inputMasks = new ArrayList<>();
    private List outputs = new ArrayList<>();
    private AtomicInteger counter = new AtomicInteger(0);
    private ThreadLocal position = new ThreadLocal<>();
    private List outputBatchInputArrays = new ArrayList<>();

    private final Object locker = new Object();

    private ReentrantReadWriteLock realLocker = new ReentrantReadWriteLock();
    private AtomicBoolean isLocked = new AtomicBoolean(false);
    private AtomicBoolean isReadLocked = new AtomicBoolean(false);

    public BatchedInferenceObservable() {

    }

    @Override
    public void addInput(INDArray[] input, INDArray[] inputMasks) {
        synchronized (locker) {
            inputs.add(input);
            this.inputMasks.add(inputMasks);
            position.set(counter.getAndIncrement());

            if (isReadLocked.get())
                realLocker.readLock().unlock();
        }
    }

    @Override
    public List> getInputBatches() {
        realLocker.writeLock().lock();
        isLocked.set(true);

        outputBatchInputArrays.clear();

        // this method should pile individual examples into single batch

        if (counter.get() > 1) {

            int pos = 0;
            List> out = new ArrayList<>();
            int numArrays = inputs.get(0).length;
            while(pos < inputs.size()) {

                //First: determine which we can actually batch...
                int lastPossible = pos;
                for (int i = pos+1; i < inputs.size(); i++) {
                    if (canBatch(inputs.get(pos), inputs.get(i))) {
                        lastPossible = i;
                    } else {
                        break;
                    }
                }

                int countToMerge = lastPossible-pos+1;
                INDArray[][] featuresToMerge = new INDArray[countToMerge][0];
                INDArray[][] fMasksToMerge = null;
                int fPos = 0;
                for( int i=pos; i<=lastPossible; i++ ){
                    featuresToMerge[fPos] = inputs.get(i);

                    if(inputMasks.get(i) != null) {
                        if(fMasksToMerge == null){
                            fMasksToMerge = new INDArray[countToMerge][0];
                            for( int j=0; j merged = DataSetUtil.mergeFeatures(featuresToMerge, fMasksToMerge);
                out.add(merged);

                outputBatchInputArrays.add(new int[]{pos, lastPossible});
                pos = lastPossible+1;
            }
            realLocker.writeLock().unlock();
            return out;
        } else {
            outputBatchInputArrays.add(new int[]{0,0});
            realLocker.writeLock().unlock();
            return Collections.singletonList(new Pair<>(inputs.get(0), inputMasks.get(0)));
        }
    }

    private static boolean canBatch(INDArray[] first, INDArray[] candidate){
        //Check if we can batch these inputs into the one array. This isn't always possible - for example, some fully
        // convolutional nets can support different input image sizes
        //For now: let's simply require that the inputs have the same shape
        //In the future: we'll intelligently handle the RNN variable length case
        //Note also we can ignore input masks here - they should have shared dimensions with the input, thus if the
        // inputs can be batched, so can the masks
        for(int i=0; i output) {
        //this method should split batched output INDArray[] into multiple separate INDArrays
        int countNumInputBatches = 0;   //Counter for total number of input batches processed
        for( int outBatchNum=0; outBatchNum getOutputs() {
        return outputs;
    }

    protected void setCounter(int value) {
        counter.set(value);
    }

    public void setPosition(int pos) {
        position.set(pos);
    }

    public int getCounter() {
        return counter.get();
    }



    public boolean isLocked() {
        boolean lck = !realLocker.readLock().tryLock();

        boolean result = lck || isLocked.get();

        if (!result)
            isReadLocked.set(true);

        return result;
    }


    @Override
    public INDArray[] getOutput() {
        // basically we should take care of splits here: each client should get its own part of output, wrt order number
        checkOutputException();
        return outputs.get(position.get());
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy