org.deeplearning4j.zoo.model.LeNet Maven / Gradle / Ivy
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.zoo.model;
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.common.resources.DL4JResources;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.AdaDelta;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.lossfunctions.LossFunctions;
@AllArgsConstructor
@Builder
public class LeNet extends ZooModel {
@Builder.Default private long seed = 1234;
@Builder.Default private int[] inputShape = new int[] {1, 28, 28};
@Builder.Default private int numClasses = 0;
@Builder.Default private IUpdater updater = new AdaDelta();
@Builder.Default private CacheMode cacheMode = CacheMode.NONE;
@Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
@Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;
private LeNet() {}
@Override
public String pretrainedUrl(PretrainedType pretrainedType) {
if (pretrainedType == PretrainedType.MNIST)
return DL4JResources.getURLString("models/lenet_dl4j_mnist_inference.zip");
else
return null;
}
@Override
public long pretrainedChecksum(PretrainedType pretrainedType) {
if (pretrainedType == PretrainedType.MNIST)
return 1906861161L;
else
return 0L;
}
@Override
public Class extends Model> modelType() {
return MultiLayerNetwork.class;
}
public MultiLayerConfiguration conf() {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(seed)
.activation(Activation.IDENTITY)
.weightInit(WeightInit.XAVIER)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(updater)
.cacheMode(cacheMode)
.trainingWorkspaceMode(workspaceMode)
.inferenceWorkspaceMode(workspaceMode)
.cudnnAlgoMode(cudnnAlgoMode)
.convolutionMode(ConvolutionMode.Same)
.list()
// block 1
.layer(new ConvolutionLayer.Builder()
.name("cnn1")
.kernelSize(5, 5)
.stride(1, 1)
.nIn(inputShape[0])
.nOut(20)
.activation(Activation.RELU)
.build())
.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
.name("maxpool1")
.kernelSize(2, 2)
.stride(2, 2)
.build())
// block 2
.layer(new ConvolutionLayer.Builder()
.name("cnn2")
.kernelSize(5, 5)
.stride(1, 1)
.nOut(50)
.activation(Activation.RELU).build())
.layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
.name("maxpool2")
.kernelSize(2, 2)
.stride(2, 2)
.build())
// fully connected
.layer(new DenseLayer.Builder()
.name("ffn1")
.activation(Activation.RELU)
.nOut(500)
.build())
// output
.layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.name("output")
.nOut(numClasses)
.activation(Activation.SOFTMAX) // radial basis function required
.build())
.setInputType(InputType.convolutionalFlat(inputShape[2], inputShape[1], inputShape[0]))
.build();
return conf;
}
@Override
public Model init() {
MultiLayerNetwork network = new MultiLayerNetwork(conf());
network.init();
return network;
}
@Override
public ModelMetaData metaData() {
return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN);
}
@Override
public void setInputShape(int[][] inputShape) {
this.inputShape = inputShape[0];
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy