All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.ResNet50 Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.common.resources.DL4JResources;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.distribution.TruncatedNormalDistribution;
import org.deeplearning4j.nn.conf.graph.ElementWiseVertex;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.IWeightInit;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.nn.weights.WeightInitDistribution;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.RmsProp;
import org.nd4j.linalg.lossfunctions.LossFunctions;

@AllArgsConstructor
@Builder
public class ResNet50 extends ZooModel {

    @Builder.Default private long seed = 1234;
    @Builder.Default private int[] inputShape = new int[] {3, 224, 224};
    @Builder.Default private int numClasses = 0;
    @Builder.Default private IWeightInit weightInit = new WeightInitDistribution(new TruncatedNormalDistribution(0.0, 0.5));
    @Builder.Default private IUpdater updater = new RmsProp(0.1, 0.96, 0.001);
    @Builder.Default private CacheMode cacheMode = CacheMode.NONE;
    @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
    @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;

    private ResNet50() {}

    @Override
    public String pretrainedUrl(PretrainedType pretrainedType) {
        if (pretrainedType == PretrainedType.IMAGENET)
            return DL4JResources.getURLString("models/resnet50_dl4j_inference.v3.zip");
        else
            return null;
    }

    @Override
    public long pretrainedChecksum(PretrainedType pretrainedType) {
        if (pretrainedType == PretrainedType.IMAGENET)
            return 3914447815L;
        else
            return 0L;
    }

    @Override
    public Class modelType() {
        return ComputationGraph.class;
    }

    @Override
    public ComputationGraph init() {
        ComputationGraphConfiguration.GraphBuilder graph = graphBuilder();
        ComputationGraphConfiguration conf = graph.build();
        ComputationGraph model = new ComputationGraph(conf);
        model.init();

        return model;
    }

    private void identityBlock(ComputationGraphConfiguration.GraphBuilder graph, int[] kernelSize, int[] filters,
                    String stage, String block, String input) {
        String convName = "res" + stage + block + "_branch";
        String batchName = "bn" + stage + block + "_branch";
        String activationName = "act" + stage + block + "_branch";
        String shortcutName = "short" + stage + block + "_branch";

        graph.addLayer(convName + "2a",
                        new ConvolutionLayer.Builder(new int[] {1, 1}).nOut(filters[0]).cudnnAlgoMode(cudnnAlgoMode)
                                        .build(),
                        input)
                        .addLayer(batchName + "2a", new BatchNormalization(), convName + "2a")
                        .addLayer(activationName + "2a",
                                        new ActivationLayer.Builder().activation(Activation.RELU).build(),
                                        batchName + "2a")

                        .addLayer(convName + "2b", new ConvolutionLayer.Builder(kernelSize).nOut(filters[1])
                                        .cudnnAlgoMode(cudnnAlgoMode).convolutionMode(ConvolutionMode.Same).build(),
                                        activationName + "2a")
                        .addLayer(batchName + "2b", new BatchNormalization(), convName + "2b")
                        .addLayer(activationName + "2b",
                                        new ActivationLayer.Builder().activation(Activation.RELU).build(),
                                        batchName + "2b")

                        .addLayer(convName + "2c",
                                        new ConvolutionLayer.Builder(new int[] {1, 1}).nOut(filters[2])
                                                        .cudnnAlgoMode(cudnnAlgoMode).build(),
                                        activationName + "2b")
                        .addLayer(batchName + "2c", new BatchNormalization(), convName + "2c")

                        .addVertex(shortcutName, new ElementWiseVertex(ElementWiseVertex.Op.Add), batchName + "2c",
                                        input)
                        .addLayer(convName, new ActivationLayer.Builder().activation(Activation.RELU).build(),
                                        shortcutName);
    }

    private void convBlock(ComputationGraphConfiguration.GraphBuilder graph, int[] kernelSize, int[] filters,
                    String stage, String block, String input) {
        convBlock(graph, kernelSize, filters, stage, block, new int[] {2, 2}, input);
    }

    private void convBlock(ComputationGraphConfiguration.GraphBuilder graph, int[] kernelSize, int[] filters,
                    String stage, String block, int[] stride, String input) {
        String convName = "res" + stage + block + "_branch";
        String batchName = "bn" + stage + block + "_branch";
        String activationName = "act" + stage + block + "_branch";
        String shortcutName = "short" + stage + block + "_branch";

        graph.addLayer(convName + "2a", new ConvolutionLayer.Builder(new int[] {1, 1}, stride).nOut(filters[0]).build(),
                        input)
                        .addLayer(batchName + "2a", new BatchNormalization(), convName + "2a")
                        .addLayer(activationName + "2a",
                                        new ActivationLayer.Builder().activation(Activation.RELU).build(),
                                        batchName + "2a")

                        .addLayer(convName + "2b",
                                        new ConvolutionLayer.Builder(kernelSize).nOut(filters[1])
                                                        .convolutionMode(ConvolutionMode.Same).build(),
                                        activationName + "2a")
                        .addLayer(batchName + "2b", new BatchNormalization(), convName + "2b")
                        .addLayer(activationName + "2b",
                                        new ActivationLayer.Builder().activation(Activation.RELU).build(),
                                        batchName + "2b")

                        .addLayer(convName + "2c",
                                        new ConvolutionLayer.Builder(new int[] {1, 1}).nOut(filters[2]).build(),
                                        activationName + "2b")
                        .addLayer(batchName + "2c", new BatchNormalization(), convName + "2c")

                        // shortcut
                        .addLayer(convName + "1",
                                        new ConvolutionLayer.Builder(new int[] {1, 1}, stride).nOut(filters[2]).build(),
                                        input)
                        .addLayer(batchName + "1", new BatchNormalization(), convName + "1")


                        .addVertex(shortcutName, new ElementWiseVertex(ElementWiseVertex.Op.Add), batchName + "2c",
                                        batchName + "1")
                        .addLayer(convName, new ActivationLayer.Builder().activation(Activation.RELU).build(),
                                        shortcutName);
    }

    public ComputationGraphConfiguration.GraphBuilder graphBuilder() {

        ComputationGraphConfiguration.GraphBuilder graph = new NeuralNetConfiguration.Builder().seed(seed)
                        .activation(Activation.IDENTITY)
                        .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                        .updater(updater)
                        .weightInit(weightInit)
                        .l1(1e-7)
                        .l2(5e-5)
                        .miniBatch(true)
                        .cacheMode(cacheMode)
                        .trainingWorkspaceMode(workspaceMode)
                        .inferenceWorkspaceMode(workspaceMode)
                        .cudnnAlgoMode(cudnnAlgoMode)
                        .convolutionMode(ConvolutionMode.Truncate)
                        .graphBuilder();


        graph.addInputs("input").setInputTypes(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0]))
                        // stem
                        .addLayer("stem-zero", new ZeroPaddingLayer.Builder(3, 3).build(), "input")
                        .addLayer("stem-cnn1",
                                        new ConvolutionLayer.Builder(new int[] {7, 7}, new int[] {2, 2}).nOut(64)
                                                        .build(),
                                        "stem-zero")
                        .addLayer("stem-batch1", new BatchNormalization(), "stem-cnn1")
                        .addLayer("stem-act1", new ActivationLayer.Builder().activation(Activation.RELU).build(),
                                        "stem-batch1")
                        .addLayer("stem-maxpool1", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX,
                                        new int[] {3, 3}, new int[] {2, 2}).build(), "stem-act1");

        convBlock(graph, new int[] {3, 3}, new int[] {64, 64, 256}, "2", "a", new int[] {2, 2}, "stem-maxpool1");
        identityBlock(graph, new int[] {3, 3}, new int[] {64, 64, 256}, "2", "b", "res2a_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {64, 64, 256}, "2", "c", "res2b_branch");

        convBlock(graph, new int[] {3, 3}, new int[] {128, 128, 512}, "3", "a", "res2c_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {128, 128, 512}, "3", "b", "res3a_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {128, 128, 512}, "3", "c", "res3b_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {128, 128, 512}, "3", "d", "res3c_branch");

        convBlock(graph, new int[] {3, 3}, new int[] {256, 256, 1024}, "4", "a", "res3d_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {256, 256, 1024}, "4", "b", "res4a_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {256, 256, 1024}, "4", "c", "res4b_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {256, 256, 1024}, "4", "d", "res4c_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {256, 256, 1024}, "4", "e", "res4d_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {256, 256, 1024}, "4", "f", "res4e_branch");

        convBlock(graph, new int[] {3, 3}, new int[] {512, 512, 2048}, "5", "a", "res4f_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {512, 512, 2048}, "5", "b", "res5a_branch");
        identityBlock(graph, new int[] {3, 3}, new int[] {512, 512, 2048}, "5", "c", "res5b_branch");

        graph.addLayer("avgpool",
                        new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {3, 3}).build(),
                        "res5c_branch")
                        // TODO add flatten/reshape layer here
                        .addLayer("output",
                                        new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                                                        .nOut(numClasses).activation(Activation.SOFTMAX).build(),
                                        "avgpool")
                        .setOutputs("output");

        return graph;
    }

    @Override
    public ModelMetaData metaData() {
        return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN);
    }

    @Override
    public void setInputShape(int[][] inputShape) {
        this.inputShape = inputShape[0];
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy