All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.VGG16 Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*
 *  ******************************************************************************
 *  *
 *  *
 *  * This program and the accompanying materials are made available under the
 *  * terms of the Apache License, Version 2.0 which is available at
 *  * https://www.apache.org/licenses/LICENSE-2.0.
 *  *
 *  *  See the NOTICE file distributed with this work for additional
 *  *  information regarding copyright ownership.
 *  * Unless required by applicable law or agreed to in writing, software
 *  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 *  * License for the specific language governing permissions and limitations
 *  * under the License.
 *  *
 *  * SPDX-License-Identifier: Apache-2.0
 *  *****************************************************************************
 */

package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import org.deeplearning4j.common.resources.DL4JResources;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.WorkspaceMode;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;

@AllArgsConstructor
@Builder
public class VGG16 extends ZooModel {

    @Builder.Default private long seed = 1234;
    @Builder.Default private int[] inputShape = new int[] {3, 224, 224};
    @Builder.Default private int numClasses = 0;
    @Builder.Default private IUpdater updater = new Nesterovs();
    @Builder.Default private CacheMode cacheMode = CacheMode.NONE;
    @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
    @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;

    private VGG16() {}

    @Override
    public String pretrainedUrl(PretrainedType pretrainedType) {
        if (pretrainedType == PretrainedType.IMAGENET)
            return DL4JResources.getURLString("models/vgg16_dl4j_inference.zip");
        else if (pretrainedType == PretrainedType.CIFAR10)
            return DL4JResources.getURLString("models/vgg16_dl4j_cifar10_inference.v1.zip");
        else if (pretrainedType == PretrainedType.VGGFACE)
            return DL4JResources.getURLString("models/vgg16_dl4j_vggface_inference.v1.zip");
        else
            return null;
    }

    @Override
    public long pretrainedChecksum(PretrainedType pretrainedType) {
        if (pretrainedType == PretrainedType.IMAGENET)
            return 3501732770L;
        if (pretrainedType == PretrainedType.CIFAR10)
            return 2192260131L;
        if (pretrainedType == PretrainedType.VGGFACE)
            return 2706403553L;
        else
            return 0L;
    }

    @Override
    public Class modelType() {
        return ComputationGraph.class;
    }

    public ComputationGraphConfiguration conf() {
        ComputationGraphConfiguration conf =
                new NeuralNetConfiguration.Builder().seed(seed)
                        .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                        .updater(updater)
                        .activation(Activation.RELU)
                        .cacheMode(cacheMode)
                        .trainingWorkspaceMode(workspaceMode)
                        .inferenceWorkspaceMode(workspaceMode)
                        .graphBuilder()
                        .addInputs("in")
                        // block 1
                        .layer(0, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nIn(inputShape[0]).nOut(64)
                                .cudnnAlgoMode(cudnnAlgoMode).build(), "in")
                        .layer(1, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(64).cudnnAlgoMode(cudnnAlgoMode).build(), "0")
                        .layer(2, new SubsamplingLayer.Builder()
                                .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(), "1")
                        // block 2
                        .layer(3, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(128).cudnnAlgoMode(cudnnAlgoMode).build(), "2")
                        .layer(4, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(128).cudnnAlgoMode(cudnnAlgoMode).build(), "3")
                        .layer(5, new SubsamplingLayer.Builder()
                                .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(), "4")
                        // block 3
                        .layer(6, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(256).cudnnAlgoMode(cudnnAlgoMode).build(), "5")
                        .layer(7, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(256).cudnnAlgoMode(cudnnAlgoMode).build(), "6")
                        .layer(8, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(256).cudnnAlgoMode(cudnnAlgoMode).build(), "7")
                        .layer(9, new SubsamplingLayer.Builder()
                                .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(), "8")
                        // block 4
                        .layer(10, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "9")
                        .layer(11, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "10")
                        .layer(12, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "11")
                        .layer(13, new SubsamplingLayer.Builder()
                                .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(), "12")
                        // block 5
                        .layer(14, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "13")
                        .layer(15, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "14")
                        .layer(16, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1)
                                .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "15")
                        .layer(17, new SubsamplingLayer.Builder()
                                .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(), "16")
                        .layer(18, new DenseLayer.Builder().nOut(4096).dropOut(0.5)
                                                .build(), "17")
                        .layer(19, new DenseLayer.Builder().nOut(4096).dropOut(0.5)
                                                .build(), "18")
                        .layer(20, new OutputLayer.Builder(
                                LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).name("output")
                                .nOut(numClasses).activation(Activation.SOFTMAX) // radial basis function required
                                .build(), "19")
                        .setOutputs("20")
                        .setInputTypes(InputType.convolutionalFlat(inputShape[2], inputShape[1], inputShape[0]))
                        .build();

        return conf;
    }

    @Override
    public ComputationGraph init() {
        ComputationGraph network = new ComputationGraph(conf());
        network.init();
        return network;
    }

    @Override
    public ModelMetaData metaData() {
        return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN);
    }

    @Override
    public void setInputShape(int[][] inputShape) {
        this.inputShape = inputShape[0];
    }

}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy