org.deeplearning4j.zoo.ZooModel Maven / Gradle / Ivy
package org.deeplearning4j.zoo;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.io.FileUtils;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.util.ModelSerializer;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import java.util.zip.Adler32;
import java.util.zip.Checksum;
/**
* A zoo model is instantiable, returns information about itself, and can download
* pretrained models if available.
*
* @author Justin Long (crockpotveggies)
*/
@Slf4j
public abstract class ZooModel implements InstantiableModel {
public static File ROOT_CACHE_DIR = new File(System.getProperty("user.home"), "/.deeplearning4j/");
public boolean pretrainedAvailable(PretrainedType pretrainedType) {
if (pretrainedUrl(pretrainedType) == null)
return false;
else
return true;
}
/**
* By default, will return a pretrained ImageNet if available.
*
* @return
* @throws IOException
*/
public Model initPretrained() throws IOException {
return initPretrained(PretrainedType.IMAGENET);
}
/**
* Returns a pretrained model for the given dataset, if available.
*
* @param pretrainedType
* @return
* @throws IOException
*/
public M initPretrained(PretrainedType pretrainedType) throws IOException {
String remoteUrl = pretrainedUrl(pretrainedType);
if (remoteUrl == null)
throw new UnsupportedOperationException(
"Pretrained " + pretrainedType + " weights are not available for this model.");
String localFilename = new File(remoteUrl).getName();
ROOT_CACHE_DIR.mkdirs();
File cachedFile = new File(ROOT_CACHE_DIR.getAbsolutePath(), localFilename);
if (!cachedFile.exists()) {
log.info("Downloading model to " + cachedFile.toString());
FileUtils.copyURLToFile(new URL(remoteUrl), cachedFile);
} else {
log.info("Using cached model at " + cachedFile.toString());
}
long expectedChecksum = pretrainedChecksum(pretrainedType);
if (expectedChecksum != 0L) {
log.info("Verifying download...");
Checksum adler = new Adler32();
FileUtils.checksum(cachedFile, adler);
long localChecksum = adler.getValue();
log.info("Checksum local is " + localChecksum + ", expecting " + expectedChecksum);
if (expectedChecksum != localChecksum) {
log.error("Checksums do not match. Cleaning up files and failing...");
cachedFile.delete();
throw new IllegalStateException(
"Pretrained model file failed checksum. If this error persists, please open an issue at https://github.com/deeplearning4j/deeplearning4j.");
}
}
if (modelType() == MultiLayerNetwork.class) {
return (M) ModelSerializer.restoreMultiLayerNetwork(cachedFile);
} else if (modelType() == ComputationGraph.class) {
return (M) ModelSerializer.restoreComputationGraph(cachedFile);
} else {
throw new UnsupportedOperationException(
"Pretrained models are only supported for MultiLayerNetwork and ComputationGraph.");
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy