org.deeplearning4j.zoo.model.AlexNet Maven / Gradle / Ivy
package org.deeplearning4j.zoo.model;
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.distribution.GaussianDistribution;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;
/**
* AlexNet
*
* Dl4j's AlexNet model interpretation based on the original paper ImageNet Classification with Deep Convolutional Neural Networks
* and the imagenetExample code referenced.
*
* References:
* http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
* https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/train_val.prototxt
*
* Model is built in dl4j based on available functionality and notes indicate where there are gaps waiting for enhancements.
*
* Bias initialization in the paper is 1 in certain layers but 0.1 in the imagenetExample code
* Weight distribution uses 0.1 std for all layers in the paper but 0.005 in the dense layers in the imagenetExample code
*
*/
@AllArgsConstructor
@Builder
public class AlexNet extends ZooModel {
@Builder.Default private long seed = 1234;
@Builder.Default private int[] inputShape = new int[] {3, 224, 224};
@Builder.Default private int numClasses = 0;
@Builder.Default private IUpdater updater = new Nesterovs(1e-2, 0.9);
@Builder.Default private CacheMode cacheMode = CacheMode.NONE;
@Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
@Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;
private AlexNet() {}
@Override
public String pretrainedUrl(PretrainedType pretrainedType) {
return null;
}
@Override
public long pretrainedChecksum(PretrainedType pretrainedType) {
return 0L;
}
@Override
public Class extends Model> modelType() {
return MultiLayerNetwork.class;
}
public MultiLayerConfiguration conf() {
double nonZeroBias = 1;
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(seed)
.weightInit(new NormalDistribution(0.0, 0.01))
.activation(Activation.RELU)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(updater)
.biasUpdater(new Nesterovs(2e-2, 0.9))
.convolutionMode(ConvolutionMode.Same)
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer) // normalize to prevent vanishing or exploding gradients
.trainingWorkspaceMode(workspaceMode)
.inferenceWorkspaceMode(workspaceMode)
.cacheMode(cacheMode)
.l2(5 * 1e-4)
.miniBatch(false)
.list()
.layer(0, new ConvolutionLayer.Builder(new int[]{11,11}, new int[]{4, 4})
.name("cnn1")
.cudnnAlgoMode(ConvolutionLayer.AlgoMode.PREFER_FASTEST)
.convolutionMode(ConvolutionMode.Truncate)
.nIn(inputShape[0])
.nOut(96)
.build())
.layer(1, new LocalResponseNormalization.Builder().build())
.layer(2, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX)
.kernelSize(3,3)
.stride(2,2)
.padding(1,1)
.name("maxpool1")
.build())
.layer(3, new ConvolutionLayer.Builder(new int[]{5,5}, new int[]{1,1}, new int[]{2,2})
.name("cnn2")
.cudnnAlgoMode(ConvolutionLayer.AlgoMode.PREFER_FASTEST)
.convolutionMode(ConvolutionMode.Truncate)
.nOut(256)
.biasInit(nonZeroBias)
.build())
.layer(4, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[]{3, 3}, new int[]{2, 2})
.convolutionMode(ConvolutionMode.Truncate)
.name("maxpool2")
.build())
.layer(5, new LocalResponseNormalization.Builder().build())
.layer(6, new ConvolutionLayer.Builder()
.kernelSize(3,3)
.stride(1,1)
.convolutionMode(ConvolutionMode.Same)
.name("cnn3")
.cudnnAlgoMode(ConvolutionLayer.AlgoMode.PREFER_FASTEST)
.nOut(384)
.build())
.layer(7, new ConvolutionLayer.Builder(new int[]{3,3}, new int[]{1,1})
.name("cnn4")
.cudnnAlgoMode(ConvolutionLayer.AlgoMode.PREFER_FASTEST)
.nOut(384)
.biasInit(nonZeroBias)
.build())
.layer(8, new ConvolutionLayer.Builder(new int[]{3,3}, new int[]{1,1})
.name("cnn5")
.cudnnAlgoMode(ConvolutionLayer.AlgoMode.PREFER_FASTEST)
.nOut(256)
.biasInit(nonZeroBias)
.build())
.layer(9, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[]{3,3}, new int[]{2,2})
.name("maxpool3")
.convolutionMode(ConvolutionMode.Truncate)
.build())
.layer(10, new DenseLayer.Builder()
.name("ffn1")
.nIn(256*6*6)
.nOut(4096)
.dist(new GaussianDistribution(0, 0.005))
.biasInit(nonZeroBias)
.build())
.layer(11, new DenseLayer.Builder()
.name("ffn2")
.nOut(4096)
.weightInit(WeightInit.DISTRIBUTION).dist(new GaussianDistribution(0, 0.005))
.biasInit(nonZeroBias)
.dropOut(0.5)
.build())
.layer(12, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.name("output")
.nOut(numClasses)
.activation(Activation.SOFTMAX)
.weightInit(WeightInit.DISTRIBUTION).dist(new GaussianDistribution(0, 0.005))
.biasInit(0.1)
.build())
.backprop(true)
.pretrain(false)
.setInputType(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0]))
.build();
return conf;
}
@Override
public MultiLayerNetwork init() {
MultiLayerConfiguration conf = conf();
MultiLayerNetwork network = new MultiLayerNetwork(conf);
network.init();
return network;
}
@Override
public ModelMetaData metaData() {
return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN);
}
@Override
public void setInputShape(int[][] inputShape) {
this.inputShape = inputShape[0];
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy