org.deeplearning4j.zoo.model.SqueezeNet Maven / Gradle / Ivy
package org.deeplearning4j.zoo.model;
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.graph.MergeVertex;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.AdaDelta;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.lossfunctions.LossFunctions;
/**
* U-Net
*
* An implementation of SqueezeNet. Touts similar accuracy to AlexNet with a fraction of the parameters.
*
* Paper: https://arxiv.org/abs/1602.07360
* ImageNet weights for this model are available and have been converted from https://github.com/rcmalli/keras-squeezenet/.
*
* @note Pretrained ImageNet weights are "special". Output shape is (1,1000,1,1).
* @author Justin Long (crockpotveggies)
*
*/
@AllArgsConstructor
@Builder
public class SqueezeNet extends ZooModel {
@Builder.Default private long seed = 1234;
@Builder.Default private int[] inputShape = new int[] {3, 227, 227};
@Builder.Default private int numClasses = 0;
@Builder.Default private WeightInit weightInit = WeightInit.RELU;
@Builder.Default private IUpdater updater = new AdaDelta();
@Builder.Default private CacheMode cacheMode = CacheMode.NONE;
@Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
@Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;
private SqueezeNet() {}
@Override
public String pretrainedUrl(PretrainedType pretrainedType) {
if (pretrainedType == PretrainedType.IMAGENET)
return "http://blob.deeplearning4j.org/models/squeezenet_dl4j_inference.v2.zip";
else
return null;
}
@Override
public long pretrainedChecksum(PretrainedType pretrainedType) {
if (pretrainedType == PretrainedType.IMAGENET)
return 3711411239L;
else
return 0L;
}
@Override
public Class extends Model> modelType() {
return ComputationGraph.class;
}
@Override
public ComputationGraph init() {
ComputationGraphConfiguration.GraphBuilder graph = graphBuilder();
graph.addInputs("input").setInputTypes(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0]));
ComputationGraphConfiguration conf = graph.build();
ComputationGraph model = new ComputationGraph(conf);
model.init();
return model;
}
public ComputationGraphConfiguration.GraphBuilder graphBuilder() {
ComputationGraphConfiguration.GraphBuilder graph = new NeuralNetConfiguration.Builder().seed(seed)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(updater)
.weightInit(weightInit)
.l2(5e-5)
.miniBatch(true)
.cacheMode(cacheMode)
.trainingWorkspaceMode(workspaceMode)
.inferenceWorkspaceMode(workspaceMode)
.convolutionMode(ConvolutionMode.Truncate)
.graphBuilder();
graph
// stem
.addLayer("conv1", new ConvolutionLayer.Builder(3,3).stride(2,2).nOut(64)
.cudnnAlgoMode(cudnnAlgoMode).build(), "input")
.addLayer("conv1_act", new ActivationLayer(Activation.RELU), "conv1")
.addLayer("pool1", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(3,3).stride(2,2).build(), "conv1_act");
// fire modules
fireModule(graph, 2, 16, 64, "pool1");
fireModule(graph, 3, 16, 64, "fire2");
graph.addLayer("pool3", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(3,3).stride(2,2).build(), "fire3");
fireModule(graph, 4, 32, 128, "pool3");
fireModule(graph, 5, 32, 128, "fire4");
graph.addLayer("pool5", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(3,3).stride(2,2).build(), "fire5");
fireModule(graph, 6, 48, 192, "pool5");
fireModule(graph, 7, 48, 192, "fire6");
fireModule(graph, 8, 64, 256, "fire7");
fireModule(graph, 9, 64, 256, "fire8");
graph
// output
.addLayer("drop9", new DropoutLayer.Builder(0.5).build(), "fire9")
.addLayer("conv10", new ConvolutionLayer.Builder(1,1).nOut(numClasses)
.cudnnAlgoMode(cudnnAlgoMode).build(), "input")
.addLayer("conv10_act", new ActivationLayer(Activation.RELU), "conv10")
.addLayer("avg_pool", new GlobalPoolingLayer(PoolingType.AVG), "conv10_act")
.addLayer("softmax", new ActivationLayer(Activation.SOFTMAX), "avg_pool")
.addLayer("loss", new LossLayer.Builder(LossFunctions.LossFunction.MCXENT).build(), "softmax")
.setOutputs("loss")
.backprop(true)
.pretrain(false);
return graph;
}
private String fireModule(ComputationGraphConfiguration.GraphBuilder graphBuilder, int fireId, int squeeze, int expand, String input) {
String prefix = "fire"+fireId;
graphBuilder
.addLayer(prefix+"_sq1x1", new ConvolutionLayer.Builder(1, 1).nOut(squeeze)
.cudnnAlgoMode(cudnnAlgoMode).build(), input)
.addLayer(prefix+"_relu_sq1x1", new ActivationLayer(Activation.RELU), prefix+"_sq1x1")
.addLayer(prefix+"exp1x1", new ConvolutionLayer.Builder(1, 1).nOut(expand)
.cudnnAlgoMode(cudnnAlgoMode).build(), prefix+"_relu_sq1x1")
.addLayer(prefix+"_relu_exp1x1", new ActivationLayer(Activation.RELU), prefix+"_exp1x1")
.addLayer(prefix+"_exp3x3", new ConvolutionLayer.Builder(3,3).nOut(expand)
.cudnnAlgoMode(cudnnAlgoMode).build(), prefix+"_relu_sq1x1")
.addLayer(prefix+"_relu_exp3x3", new ActivationLayer(Activation.RELU), prefix+"_exp3x3")
.addVertex(prefix, new MergeVertex(), prefix+"_relu_exp1x1", prefix+"_relu_exp3x3");
return prefix;
}
@Override
public ModelMetaData metaData() {
return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN);
}
@Override
public void setInputShape(int[][] inputShape) {
this.inputShape = inputShape[0];
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy