All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.TextGenerationLSTM Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.GravesLSTM;
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.RmsProp;
import org.nd4j.linalg.lossfunctions.LossFunctions;

/**
 * LSTM designed for text generation. Can be trained on a corpus of text. For this model, numClasses is
 * used to input {@code totalUniqueCharacters} for the LSTM input layer.
 *
 * Architecture follows this implementation: https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py
 *
 * 

Walt Whitman weights are available for generating text from his works, adapted from https://github.com/craigomac/InfiniteMonkeys.

* * @author Justin Long (crockpotveggies) */ @AllArgsConstructor @Builder public class TextGenerationLSTM extends ZooModel { @Builder.Default private long seed = 1234; @Builder.Default private int maxLength = 40; @Builder.Default private int totalUniqueCharacters = 47; private int[] inputShape = new int[] {maxLength, totalUniqueCharacters}; @Builder.Default private IUpdater updater = new RmsProp(0.01); @Builder.Default private CacheMode cacheMode = CacheMode.NONE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; private TextGenerationLSTM() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { return null; } @Override public long pretrainedChecksum(PretrainedType pretrainedType) { return 0L; } @Override public Class modelType() { return MultiLayerNetwork.class; } public MultiLayerConfiguration conf() { MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .l2(0.001) .weightInit(WeightInit.XAVIER) .updater(updater) .cacheMode(cacheMode) .trainingWorkspaceMode(workspaceMode) .inferenceWorkspaceMode(workspaceMode) .cudnnAlgoMode(cudnnAlgoMode) .list() .layer(0, new GravesLSTM.Builder().nIn(inputShape[1]).nOut(256).activation(Activation.TANH) .build()) .layer(1, new GravesLSTM.Builder().nOut(256).activation(Activation.TANH).build()) .layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT) .activation(Activation.SOFTMAX) //MCXENT + softmax for classification .nOut(totalUniqueCharacters).build()) .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(50).tBPTTBackwardLength(50) .pretrain(false).backprop(true).build(); return conf; } @Override public Model init() { MultiLayerNetwork network = new MultiLayerNetwork(conf()); network.init(); return network; } @Override public ModelMetaData metaData() { return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.RNN); } @Override public void setInputShape(int[][] inputShape) { this.inputShape = inputShape[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy