org.deeplearning4j.zoo.model.TextGenerationLSTM Maven / Gradle / Ivy
package org.deeplearning4j.zoo.model;
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.GravesLSTM;
import org.deeplearning4j.nn.conf.layers.RnnOutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.RmsProp;
import org.nd4j.linalg.lossfunctions.LossFunctions;
/**
* LSTM designed for text generation. Can be trained on a corpus of text. For this model, numClasses is
* used to input {@code totalUniqueCharacters} for the LSTM input layer.
*
* Architecture follows this implementation: https://github.com/fchollet/keras/blob/master/examples/lstm_text_generation.py
*
* Walt Whitman weights are available for generating text from his works, adapted from https://github.com/craigomac/InfiniteMonkeys.
*
* @author Justin Long (crockpotveggies)
*/
@AllArgsConstructor
@Builder
public class TextGenerationLSTM extends ZooModel {
@Builder.Default private long seed = 1234;
@Builder.Default private int maxLength = 40;
@Builder.Default private int totalUniqueCharacters = 47;
private int[] inputShape = new int[] {maxLength, totalUniqueCharacters};
@Builder.Default private IUpdater updater = new RmsProp(0.01);
@Builder.Default private CacheMode cacheMode = CacheMode.NONE;
@Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
@Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;
private TextGenerationLSTM() {}
@Override
public String pretrainedUrl(PretrainedType pretrainedType) {
return null;
}
@Override
public long pretrainedChecksum(PretrainedType pretrainedType) {
return 0L;
}
@Override
public Class extends Model> modelType() {
return MultiLayerNetwork.class;
}
public MultiLayerConfiguration conf() {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.l2(0.001)
.weightInit(WeightInit.XAVIER)
.updater(updater)
.cacheMode(cacheMode)
.trainingWorkspaceMode(workspaceMode)
.inferenceWorkspaceMode(workspaceMode)
.cudnnAlgoMode(cudnnAlgoMode)
.list()
.layer(0, new GravesLSTM.Builder().nIn(inputShape[1]).nOut(256).activation(Activation.TANH)
.build())
.layer(1, new GravesLSTM.Builder().nOut(256).activation(Activation.TANH).build())
.layer(2, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX) //MCXENT + softmax for classification
.nOut(totalUniqueCharacters).build())
.backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(50).tBPTTBackwardLength(50)
.pretrain(false).backprop(true).build();
return conf;
}
@Override
public Model init() {
MultiLayerNetwork network = new MultiLayerNetwork(conf());
network.init();
return network;
}
@Override
public ModelMetaData metaData() {
return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.RNN);
}
@Override
public void setInputShape(int[][] inputShape) {
this.inputShape = inputShape[0];
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy