org.deeplearning4j.zoo.model.TinyYOLO Maven / Gradle / Ivy
package org.deeplearning4j.zoo.model;
import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Getter;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.learning.config.IUpdater;
import static org.deeplearning4j.zoo.model.helper.DarknetHelper.addLayers;
/**
* Tiny YOLO
* Reference: https://arxiv.org/pdf/1612.08242.pdf
*
* ImageNet+VOC weights for this model are available and have been converted from https://pjreddie.com/darknet/yolo/
* using https://github.com/allanzelener/YAD2K and the following code.
*
* {@code
* String filename = "tiny-yolo-voc.h5";
* ComputationGraph graph = KerasModelImport.importKerasModelAndWeights(filename, false);
* INDArray priors = Nd4j.create(priorBoxes);
*
* FineTuneConfiguration fineTuneConf = new FineTuneConfiguration.Builder()
* .seed(seed)
* .iterations(iterations)
* .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
* .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
* .gradientNormalizationThreshold(1.0)
* .updater(new Adam.Builder().learningRate(1e-3).build())
* .l2(0.00001)
* .activation(Activation.IDENTITY)
* .trainingWorkspaceMode(workspaceMode)
* .inferenceWorkspaceMode(workspaceMode)
* .build();
*
* ComputationGraph model = new TransferLearning.GraphBuilder(graph)
* .fineTuneConfiguration(fineTuneConf)
* .addLayer("outputs",
* new Yolo2OutputLayer.Builder()
* .boundingBoxPriors(priors)
* .build(),
* "conv2d_9")
* .setOutputs("outputs")
* .build();
*
* System.out.println(model.summary(InputType.convolutional(416, 416, 3)));
*
* ModelSerializer.writeModel(model, "tiny-yolo-voc_dl4j_inference.v1.zip", false);
*}
*
* The channels of the 416x416 input images need to be in RGB order (not BGR), with values normalized within [0, 1].
*
* @author saudet
*/
@AllArgsConstructor
@Builder
public class TinyYOLO extends ZooModel {
@Builder.Default @Getter private int nBoxes = 5;
@Builder.Default @Getter private double[][] priorBoxes = {{1.08, 1.19}, {3.42, 4.41}, {6.63, 11.38}, {9.42, 5.11}, {16.62, 10.52}};
@Builder.Default private long seed = 1234;
@Builder.Default private int[] inputShape = {3, 416, 416};
@Builder.Default private int numClasses = 0;
@Builder.Default private IUpdater updater = new Adam(1e-3);
@Builder.Default private CacheMode cacheMode = CacheMode.NONE;
@Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
@Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;
private TinyYOLO() {}
@Override
public String pretrainedUrl(PretrainedType pretrainedType) {
if (pretrainedType == PretrainedType.IMAGENET)
return "http://blob.deeplearning4j.org/models/tiny-yolo-voc_dl4j_inference.v2.zip";
else
return null;
}
@Override
public long pretrainedChecksum(PretrainedType pretrainedType) {
if (pretrainedType == PretrainedType.IMAGENET)
return 1256226465L;
else
return 0L;
}
@Override
public Class extends Model> modelType() {
return ComputationGraph.class;
}
public ComputationGraphConfiguration conf() {
INDArray priors = Nd4j.create(priorBoxes);
GraphBuilder graphBuilder = new NeuralNetConfiguration.Builder()
.seed(seed)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
.gradientNormalizationThreshold(1.0)
.updater(updater)
.l2(0.00001)
.activation(Activation.IDENTITY)
.cacheMode(cacheMode)
.trainingWorkspaceMode(workspaceMode)
.inferenceWorkspaceMode(workspaceMode)
.cudnnAlgoMode(cudnnAlgoMode)
.graphBuilder()
.addInputs("input")
.setInputTypes(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0]));
addLayers(graphBuilder, 1, 3, inputShape[0], 16, 2, 2);
addLayers(graphBuilder, 2, 3, 16, 32, 2, 2);
addLayers(graphBuilder, 3, 3, 32, 64, 2, 2);
addLayers(graphBuilder, 4, 3, 64, 128, 2, 2);
addLayers(graphBuilder, 5, 3, 128, 256, 2, 2);
addLayers(graphBuilder, 6, 3, 256, 512, 2, 1);
addLayers(graphBuilder, 7, 3, 512, 1024, 0, 0);
addLayers(graphBuilder, 8, 3, 1024, 1024, 0, 0);
int layerNumber = 9;
graphBuilder
.addLayer("convolution2d_" + layerNumber,
new ConvolutionLayer.Builder(1,1)
.nIn(1024)
.nOut(nBoxes * (5 + numClasses))
.weightInit(WeightInit.XAVIER)
.stride(1,1)
.convolutionMode(ConvolutionMode.Same)
.weightInit(WeightInit.RELU)
.activation(Activation.IDENTITY)
.build(),
"activation_" + (layerNumber - 1))
.addLayer("outputs",
new Yolo2OutputLayer.Builder()
.boundingBoxPriors(priors)
.build(),
"convolution2d_" + layerNumber)
.setOutputs("outputs").backprop(true).pretrain(false);
return graphBuilder.build();
}
@Override
public ComputationGraph init() {
ComputationGraph model = new ComputationGraph(conf());
model.init();
return model;
}
@Override
public ModelMetaData metaData() {
return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN);
}
@Override
public void setInputShape(int[][] inputShape) {
this.inputShape = inputShape[0];
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy