All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.TinyYOLO Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.Getter;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration.GraphBuilder;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.objdetect.Yolo2OutputLayer;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.learning.config.IUpdater;

import static org.deeplearning4j.zoo.model.helper.DarknetHelper.addLayers;

/**
 * Tiny YOLO
 *  Reference: https://arxiv.org/pdf/1612.08242.pdf
 *
 * 

ImageNet+VOC weights for this model are available and have been converted from https://pjreddie.com/darknet/yolo/ * using https://github.com/allanzelener/YAD2K and the following code.

* *
{@code
 *     String filename = "tiny-yolo-voc.h5";
 *     ComputationGraph graph = KerasModelImport.importKerasModelAndWeights(filename, false);
 *     INDArray priors = Nd4j.create(priorBoxes);
 *
 *     FineTuneConfiguration fineTuneConf = new FineTuneConfiguration.Builder()
 *             .seed(seed)
 *             .iterations(iterations)
 *             .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
 *             .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
 *             .gradientNormalizationThreshold(1.0)
 *             .updater(new Adam.Builder().learningRate(1e-3).build())
 *             .l2(0.00001)
 *             .activation(Activation.IDENTITY)
 *             .trainingWorkspaceMode(workspaceMode)
 *             .inferenceWorkspaceMode(workspaceMode)
 *             .build();
 *
 *     ComputationGraph model = new TransferLearning.GraphBuilder(graph)
 *             .fineTuneConfiguration(fineTuneConf)
 *             .addLayer("outputs",
 *                     new Yolo2OutputLayer.Builder()
 *                             .boundingBoxPriors(priors)
 *                             .build(),
 *                     "conv2d_9")
 *             .setOutputs("outputs")
 *             .build();
 *
 *     System.out.println(model.summary(InputType.convolutional(416, 416, 3)));
 *
 *     ModelSerializer.writeModel(model, "tiny-yolo-voc_dl4j_inference.v1.zip", false);
 *}
* * The channels of the 416x416 input images need to be in RGB order (not BGR), with values normalized within [0, 1]. * * @author saudet */ @AllArgsConstructor @Builder public class TinyYOLO extends ZooModel { @Builder.Default @Getter private int nBoxes = 5; @Builder.Default @Getter private double[][] priorBoxes = {{1.08, 1.19}, {3.42, 4.41}, {6.63, 11.38}, {9.42, 5.11}, {16.62, 10.52}}; @Builder.Default private long seed = 1234; @Builder.Default private int[] inputShape = {3, 416, 416}; @Builder.Default private int numClasses = 0; @Builder.Default private IUpdater updater = new Adam(1e-3); @Builder.Default private CacheMode cacheMode = CacheMode.NONE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; private TinyYOLO() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return "http://blob.deeplearning4j.org/models/tiny-yolo-voc_dl4j_inference.v2.zip"; else return null; } @Override public long pretrainedChecksum(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return 1256226465L; else return 0L; } @Override public Class modelType() { return ComputationGraph.class; } public ComputationGraphConfiguration conf() { INDArray priors = Nd4j.create(priorBoxes); GraphBuilder graphBuilder = new NeuralNetConfiguration.Builder() .seed(seed) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .gradientNormalization(GradientNormalization.RenormalizeL2PerLayer) .gradientNormalizationThreshold(1.0) .updater(updater) .l2(0.00001) .activation(Activation.IDENTITY) .cacheMode(cacheMode) .trainingWorkspaceMode(workspaceMode) .inferenceWorkspaceMode(workspaceMode) .cudnnAlgoMode(cudnnAlgoMode) .graphBuilder() .addInputs("input") .setInputTypes(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0])); addLayers(graphBuilder, 1, 3, inputShape[0], 16, 2, 2); addLayers(graphBuilder, 2, 3, 16, 32, 2, 2); addLayers(graphBuilder, 3, 3, 32, 64, 2, 2); addLayers(graphBuilder, 4, 3, 64, 128, 2, 2); addLayers(graphBuilder, 5, 3, 128, 256, 2, 2); addLayers(graphBuilder, 6, 3, 256, 512, 2, 1); addLayers(graphBuilder, 7, 3, 512, 1024, 0, 0); addLayers(graphBuilder, 8, 3, 1024, 1024, 0, 0); int layerNumber = 9; graphBuilder .addLayer("convolution2d_" + layerNumber, new ConvolutionLayer.Builder(1,1) .nIn(1024) .nOut(nBoxes * (5 + numClasses)) .weightInit(WeightInit.XAVIER) .stride(1,1) .convolutionMode(ConvolutionMode.Same) .weightInit(WeightInit.RELU) .activation(Activation.IDENTITY) .build(), "activation_" + (layerNumber - 1)) .addLayer("outputs", new Yolo2OutputLayer.Builder() .boundingBoxPriors(priors) .build(), "convolution2d_" + layerNumber) .setOutputs("outputs").backprop(true).pretrain(false); return graphBuilder.build(); } @Override public ComputationGraph init() { ComputationGraph model = new ComputationGraph(conf()); model.init(); return model; } @Override public ModelMetaData metaData() { return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN); } @Override public void setInputShape(int[][] inputShape) { this.inputShape = inputShape[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy