All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.VGG16 Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.CacheMode;
import org.deeplearning4j.nn.conf.ComputationGraphConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.WorkspaceMode;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.Nesterovs;
import org.nd4j.linalg.lossfunctions.LossFunctions;

/**
 * VGG-16, from Very Deep Convolutional Networks for Large-Scale Image Recognition
 * https://arxiv.org/abs/1409.1556
 *
 * Deep Face Recognition
 * http://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf
 *
 * 

ImageNet weights for this model are available and have been converted from https://github.com/fchollet/keras/tree/1.1.2/keras/applications.

*

CIFAR-10 weights for this model are available and have been converted using "approach 2" from https://github.com/rajatvikramsingh/cifar10-vgg16.

*

VGGFace weights for this model are available and have been converted from https://github.com/rcmalli/keras-vggface.

* * @author Justin Long (crockpotveggies) */ @AllArgsConstructor @Builder public class VGG16 extends ZooModel { @Builder.Default private long seed = 1234; @Builder.Default private int[] inputShape = new int[] {3, 224, 224}; @Builder.Default private int numClasses = 0; @Builder.Default private IUpdater updater = new Nesterovs(); @Builder.Default private CacheMode cacheMode = CacheMode.NONE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; private VGG16() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return "http://blob.deeplearning4j.org/models/vgg16_dl4j_inference.zip"; else if (pretrainedType == PretrainedType.CIFAR10) return "http://blob.deeplearning4j.org/models/vgg16_dl4j_cifar10_inference.v1.zip"; else if (pretrainedType == PretrainedType.VGGFACE) return "http://blob.deeplearning4j.org/models/vgg16_dl4j_vggface_inference.v1.zip"; else return null; } @Override public long pretrainedChecksum(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return 3501732770L; if (pretrainedType == PretrainedType.CIFAR10) return 2192260131L; if (pretrainedType == PretrainedType.VGGFACE) return 2706403553L; else return 0L; } @Override public Class modelType() { return ComputationGraph.class; } public ComputationGraphConfiguration conf() { ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().seed(seed) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .updater(updater) .activation(Activation.RELU) .cacheMode(cacheMode) .trainingWorkspaceMode(workspaceMode) .inferenceWorkspaceMode(workspaceMode) .graphBuilder() .addInputs("in") // block 1 .layer(0, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nIn(inputShape[0]).nOut(64) .cudnnAlgoMode(cudnnAlgoMode).build(), "in") .layer(1, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(64).cudnnAlgoMode(cudnnAlgoMode).build(), "0") .layer(2, new SubsamplingLayer.Builder() .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "1") // block 2 .layer(3, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(128).cudnnAlgoMode(cudnnAlgoMode).build(), "2") .layer(4, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(128).cudnnAlgoMode(cudnnAlgoMode).build(), "3") .layer(5, new SubsamplingLayer.Builder() .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "4") // block 3 .layer(6, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(256).cudnnAlgoMode(cudnnAlgoMode).build(), "5") .layer(7, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(256).cudnnAlgoMode(cudnnAlgoMode).build(), "6") .layer(8, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(256).cudnnAlgoMode(cudnnAlgoMode).build(), "7") .layer(9, new SubsamplingLayer.Builder() .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "8") // block 4 .layer(10, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "9") .layer(11, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "10") .layer(12, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "11") .layer(13, new SubsamplingLayer.Builder() .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "12") // block 5 .layer(14, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "13") .layer(15, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "14") .layer(16, new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1) .padding(1, 1).nOut(512).cudnnAlgoMode(cudnnAlgoMode).build(), "15") .layer(17, new SubsamplingLayer.Builder() .poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "16") // .layer(18, new DenseLayer.Builder().nOut(4096).dropOut(0.5) // .build()) // .layer(19, new DenseLayer.Builder().nOut(4096).dropOut(0.5) // .build()) .layer(18, new OutputLayer.Builder( LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).name("output") .nOut(numClasses).activation(Activation.SOFTMAX) // radial basis function required .build(), "17") .setOutputs("18") .backprop(true).pretrain(false) .setInputTypes(InputType.convolutionalFlat(inputShape[2], inputShape[1], inputShape[0])) .build(); return conf; } @Override public ComputationGraph init() { ComputationGraph network = new ComputationGraph(conf()); network.init(); return network; } @Override public ModelMetaData metaData() { return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN); } @Override public void setInputShape(int[][] inputShape) { this.inputShape = inputShape[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy