All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.InceptionResNetV1 Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.distribution.TruncatedNormalDistribution;
import org.deeplearning4j.nn.conf.graph.L2NormalizeVertex;
import org.deeplearning4j.nn.conf.graph.MergeVertex;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.deeplearning4j.zoo.model.helper.InceptionResNetHelper;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.learning.config.RmsProp;
import org.nd4j.linalg.lossfunctions.LossFunctions;

/**
 * A variant of the original FaceNet model that relies on embeddings and triplet loss.
* Reference: https://arxiv.org/abs/1503.03832
* Also based on the OpenFace implementation: * http://reports-archive.adm.cs.cmu.edu/anon/2016/CMU-CS-16-118.pdf * * Revised and consolidated version by @crockpotveggies */ @AllArgsConstructor @Builder public class InceptionResNetV1 extends ZooModel { @Builder.Default private long seed = 1234; @Builder.Default private int[] inputShape = new int[] {3, 160, 160}; @Builder.Default private int numClasses = 0; @Builder.Default private IUpdater updater = new RmsProp(0.1, 0.96, 0.001); @Builder.Default private CacheMode cacheMode = CacheMode.NONE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; private InceptionResNetV1() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { return null; } @Override public long pretrainedChecksum(PretrainedType pretrainedType) { return 0L; } @Override public Class modelType() { return ComputationGraph.class; } @Override public ComputationGraph init() { int embeddingSize = 128; ComputationGraphConfiguration.GraphBuilder graph = graphBuilder("input1"); graph.addInputs("input1").setInputTypes(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0])) // Logits .addLayer("bottleneck", new DenseLayer.Builder().nIn(5376).nOut(embeddingSize).build(), "avgpool") // Embeddings .addVertex("embeddings", new L2NormalizeVertex(new int[] {1}, 1e-10), "bottleneck") // Output .addLayer("outputLayer", new CenterLossOutputLayer.Builder() .lossFunction(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) .activation(Activation.SOFTMAX).alpha(0.9).lambda(1e-4) .nIn(embeddingSize).nOut(numClasses).build(), "embeddings") .setOutputs("outputLayer"); ComputationGraphConfiguration conf = graph.build(); ComputationGraph model = new ComputationGraph(conf); model.init(); return model; } public ComputationGraphConfiguration.GraphBuilder graphBuilder(String input) { ComputationGraphConfiguration.GraphBuilder graph = new NeuralNetConfiguration.Builder().seed(seed) .activation(Activation.RELU) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .updater(updater) .weightInit(new TruncatedNormalDistribution(0.0, 0.5)) .l2(5e-5) .miniBatch(true) .cacheMode(cacheMode) .trainingWorkspaceMode(workspaceMode) .inferenceWorkspaceMode(workspaceMode) .convolutionMode(ConvolutionMode.Truncate).graphBuilder(); graph // stem .addLayer("stem-cnn1", new ConvolutionLayer.Builder(new int[] {3, 3}, new int[] {2, 2}) .nIn(inputShape[0]).nOut(32) .cudnnAlgoMode(cudnnAlgoMode).build(), input) .addLayer("stem-batch1", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(32).nOut(32) .build(), "stem-cnn1") .addLayer("stem-cnn2", new ConvolutionLayer.Builder(new int[] {3, 3}).nIn(32).nOut(32) .cudnnAlgoMode(cudnnAlgoMode).build(), "stem-batch1") .addLayer("stem-batch2", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(32).nOut(32) .build(), "stem-cnn2") .addLayer("stem-cnn3", new ConvolutionLayer.Builder(new int[] {3, 3}) .convolutionMode(ConvolutionMode.Same).nIn(32).nOut(64) .cudnnAlgoMode(cudnnAlgoMode).build(), "stem-batch2") .addLayer("stem-batch3", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(64) .nOut(64).build(), "stem-cnn3") .addLayer("stem-pool4", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {3, 3}, new int[] {2, 2}).build(), "stem-batch3") .addLayer("stem-cnn5", new ConvolutionLayer.Builder(new int[] {1, 1}).nIn(64).nOut(80) .cudnnAlgoMode(cudnnAlgoMode).build(), "stem-pool4") .addLayer("stem-batch5", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(80).nOut(80) .build(), "stem-cnn5") .addLayer("stem-cnn6", new ConvolutionLayer.Builder(new int[] {3, 3}).nIn(80).nOut(128) .cudnnAlgoMode(cudnnAlgoMode).build(), "stem-batch5") .addLayer("stem-batch6", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(128).nOut(128) .build(), "stem-cnn6") .addLayer("stem-cnn7", new ConvolutionLayer.Builder(new int[] {3, 3}, new int[] {2, 2}).nIn(128) .nOut(192).cudnnAlgoMode(cudnnAlgoMode) .build(), "stem-batch6") .addLayer("stem-batch7", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(192) .nOut(192).build(), "stem-cnn7"); // 5xInception-resnet-A InceptionResNetHelper.inceptionV1ResA(graph, "resnetA", 5, 0.17, "stem-batch7"); // Reduction-A graph // 3x3 .addLayer("reduceA-cnn1", new ConvolutionLayer.Builder(new int[] {3, 3}, new int[] {2, 2}).nIn(192) .nOut(192).cudnnAlgoMode(cudnnAlgoMode) .build(), "resnetA") .addLayer("reduceA-batch1", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(192).nOut(192) .build(), "reduceA-cnn1") // 1x1 -> 3x3 -> 3x3 .addLayer("reduceA-cnn2", new ConvolutionLayer.Builder(new int[] {1, 1}) .convolutionMode(ConvolutionMode.Same).nIn(192).nOut(128) .cudnnAlgoMode(cudnnAlgoMode).build(), "resnetA") .addLayer("reduceA-batch2", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(128).nOut(128) .build(), "reduceA-cnn2") .addLayer("reduceA-cnn3", new ConvolutionLayer.Builder(new int[] {3, 3}) .convolutionMode(ConvolutionMode.Same).nIn(128).nOut(128) .cudnnAlgoMode(cudnnAlgoMode).build(), "reduceA-batch2") .addLayer("reduceA-batch3", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(128).nOut(128) .build(), "reduceA-cnn3") .addLayer("reduceA-cnn4", new ConvolutionLayer.Builder(new int[] {3, 3}, new int[] {2, 2}).nIn(128) .nOut(192).cudnnAlgoMode(cudnnAlgoMode) .build(), "reduceA-batch3") .addLayer("reduceA-batch4", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(192).nOut(192) .build(), "reduceA-cnn4") // maxpool .addLayer("reduceA-pool5", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {3, 3}, new int[] {2, 2}).build(), "resnetA") // --> .addVertex("reduceA", new MergeVertex(), "reduceA-batch1", "reduceA-batch4", "reduceA-pool5"); // 10xInception-resnet-B InceptionResNetHelper.inceptionV1ResB(graph, "resnetB", 10, 0.10, "reduceA"); // Reduction-B graph // 3x3 pool .addLayer("reduceB-pool1", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {3, 3}, new int[] {2, 2}).build(), "resnetB") // 1x1 -> 3x3 .addLayer("reduceB-cnn2", new ConvolutionLayer.Builder(new int[] {1, 1}) .convolutionMode(ConvolutionMode.Same).nIn(576).nOut(256) .cudnnAlgoMode(cudnnAlgoMode).build(), "resnetB") .addLayer("reduceB-batch1", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(256).nOut(256) .build(), "reduceB-cnn2") .addLayer("reduceB-cnn3", new ConvolutionLayer.Builder(new int[] {3, 3}, new int[] {2, 2}).nIn(256) .nOut(256).cudnnAlgoMode(cudnnAlgoMode) .build(), "reduceB-batch1") .addLayer("reduceB-batch2", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(256).nOut(256) .build(), "reduceB-cnn3") // 1x1 -> 3x3 .addLayer("reduceB-cnn4", new ConvolutionLayer.Builder(new int[] {1, 1}) .convolutionMode(ConvolutionMode.Same).nIn(576).nOut(256) .cudnnAlgoMode(cudnnAlgoMode).build(), "resnetB") .addLayer("reduceB-batch3", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(256).nOut(256) .build(), "reduceB-cnn4") .addLayer("reduceB-cnn5", new ConvolutionLayer.Builder(new int[] {3, 3}, new int[] {2, 2}).nIn(256) .nOut(256).cudnnAlgoMode(cudnnAlgoMode) .build(), "reduceB-batch3") .addLayer("reduceB-batch4", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(256).nOut(256) .build(), "reduceB-cnn5") // 1x1 -> 3x3 -> 3x3 .addLayer("reduceB-cnn6", new ConvolutionLayer.Builder(new int[] {1, 1}) .convolutionMode(ConvolutionMode.Same).nIn(576).nOut(256) .cudnnAlgoMode(cudnnAlgoMode).build(), "resnetB") .addLayer("reduceB-batch5", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(256).nOut(256) .build(), "reduceB-cnn6") .addLayer("reduceB-cnn7", new ConvolutionLayer.Builder(new int[] {3, 3}) .convolutionMode(ConvolutionMode.Same).nIn(256).nOut(256) .cudnnAlgoMode(cudnnAlgoMode).build(), "reduceB-batch5") .addLayer("reduceB-batch6", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(256).nOut(256) .build(), "reduceB-cnn7") .addLayer("reduceB-cnn8", new ConvolutionLayer.Builder(new int[] {3, 3}, new int[] {2, 2}).nIn(256) .nOut(256).cudnnAlgoMode(cudnnAlgoMode) .build(), "reduceB-batch6") .addLayer("reduceB-batch7", new BatchNormalization.Builder(false).decay(0.995).eps(0.001).nIn(256).nOut(256) .build(), "reduceB-cnn8") // --> .addVertex("reduceB", new MergeVertex(), "reduceB-pool1", "reduceB-batch2", "reduceB-batch4", "reduceB-batch7"); // 10xInception-resnet-C InceptionResNetHelper.inceptionV1ResC(graph, "resnetC", 5, 0.20, "reduceB"); // Average pooling graph.addLayer("avgpool", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.AVG, new int[] {1, 1}).build(), "resnetC"); return graph; } @Override public ModelMetaData metaData() { return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN); } @Override public void setInputShape(int[][] inputShape) { this.inputShape = inputShape[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy