All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.LeNet Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.common.resources.DL4JResources;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.ConvolutionLayer;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.layers.SubsamplingLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.AdaDelta;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.lossfunctions.LossFunctions;

/**
 * LeNet was an early promising achiever on the ImageNet dataset.
 * References:
* - http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
* - https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet.prototxt
* *

MNIST weights for this model are available and have been converted from https://github.com/f00-/mnist-lenet-keras.

* * @author kepricon * @author Justin Long (crockpotveggies) */ @AllArgsConstructor @Builder public class LeNet extends ZooModel { @Builder.Default private long seed = 1234; @Builder.Default private int[] inputShape = new int[] {3, 224, 224}; @Builder.Default private int numClasses = 0; @Builder.Default private IUpdater updater = new AdaDelta(); @Builder.Default private CacheMode cacheMode = CacheMode.NONE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; private LeNet() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.MNIST) return DL4JResources.getURLString("models/lenet_dl4j_mnist_inference.zip"); else return null; } @Override public long pretrainedChecksum(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.MNIST) return 1906861161L; else return 0L; } @Override public Class modelType() { return MultiLayerNetwork.class; } public MultiLayerConfiguration conf() { MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder().seed(seed) .activation(Activation.IDENTITY) .weightInit(WeightInit.XAVIER) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .updater(updater) .cacheMode(cacheMode) .trainingWorkspaceMode(workspaceMode) .inferenceWorkspaceMode(workspaceMode) .cudnnAlgoMode(cudnnAlgoMode) .convolutionMode(ConvolutionMode.Same) .list() // block 1 .layer(new ConvolutionLayer.Builder() .name("cnn1") .kernelSize(5, 5) .stride(1, 1) .nIn(inputShape[0]) .nOut(20) .activation(Activation.RELU) .build()) .layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX) .name("maxpool1") .kernelSize(2, 2) .stride(2, 2) .build()) // block 2 .layer(new ConvolutionLayer.Builder() .name("cnn2") .kernelSize(5, 5) .stride(1, 1) .nOut(50) .activation(Activation.RELU).build()) .layer(new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX) .name("maxpool2") .kernelSize(2, 2) .stride(2, 2) .build()) // fully connected .layer(new DenseLayer.Builder() .name("ffn1") .activation(Activation.RELU) .nOut(500) .build()) // output .layer(new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT) .name("output") .nOut(numClasses) .activation(Activation.SOFTMAX) // radial basis function required .build()) .setInputType(InputType.convolutionalFlat(inputShape[2], inputShape[1], inputShape[0])) .build(); return conf; } @Override public Model init() { MultiLayerNetwork network = new MultiLayerNetwork(conf()); network.init(); return network; } @Override public ModelMetaData metaData() { return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN); } @Override public void setInputShape(int[][] inputShape) { this.inputShape = inputShape[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy