All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.NASNet Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import org.deeplearning4j.common.resources.DL4JResources;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.distribution.Distribution;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.distribution.TruncatedNormalDistribution;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.AdaDelta;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.nd4j.linalg.primitives.Pair;

import static org.deeplearning4j.zoo.model.helper.NASNetHelper.normalA;
import static org.deeplearning4j.zoo.model.helper.NASNetHelper.reductionA;

/**
 * U-Net
 *
 * Implementation of NASNet-A in Deeplearning4j. NASNet refers to Neural Architecture Search Network, a family of models
 * that were designed automatically by learning the model architectures directly on the dataset of interest.
 *
 * 

This implementation uses 1056 penultimate filters and an input shape of (3, 224, 224). You can change this.

* *

Paper: https://arxiv.org/abs/1707.07012

*

ImageNet weights for this model are available and have been converted from https://keras.io/applications/.

* * @note If using the IMAGENETLARGE weights, the input shape is (3, 331, 331). * @author Justin Long (crockpotveggies) * */ @AllArgsConstructor @Builder public class NASNet extends ZooModel { @Builder.Default private long seed = 1234; @Builder.Default private int[] inputShape = new int[] {3, 224, 224}; @Builder.Default private int numClasses = 0; @Builder.Default private WeightInit weightInit = WeightInit.RELU; @Builder.Default private IUpdater updater = new AdaDelta(); @Builder.Default private CacheMode cacheMode = CacheMode.DEVICE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; // NASNet specific @Builder.Default private int numBlocks = 6; @Builder.Default private int penultimateFilters = 1056; @Builder.Default private int stemFilters = 96; @Builder.Default private int filterMultiplier = 2; @Builder.Default private boolean skipReduction = true; private NASNet() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return DL4JResources.getURLString("models/nasnetmobile_dl4j_inference.v1.zip"); else if (pretrainedType == PretrainedType.IMAGENETLARGE) return DL4JResources.getURLString("models/nasnetlarge_dl4j_inference.v1.zip"); else return null; } @Override public long pretrainedChecksum(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return 3082463801L; else if (pretrainedType == PretrainedType.IMAGENETLARGE) return 321395591L; else return 0L; } @Override public Class modelType() { return ComputationGraph.class; } @Override public ComputationGraph init() { ComputationGraphConfiguration.GraphBuilder graph = graphBuilder(); graph.addInputs("input").setInputTypes(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0])); ComputationGraphConfiguration conf = graph.build(); ComputationGraph model = new ComputationGraph(conf); model.init(); return model; } public ComputationGraphConfiguration.GraphBuilder graphBuilder() { if(penultimateFilters % 24 != 0) { throw new IllegalArgumentException("For NASNet-A models penultimate filters must be divisible by 24. Current value is "+penultimateFilters); } int filters = (int) Math.floor(penultimateFilters / 24); ComputationGraphConfiguration.GraphBuilder graph = new NeuralNetConfiguration.Builder().seed(seed) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .updater(updater) .weightInit(weightInit) .l2(5e-5) .miniBatch(true) .cacheMode(cacheMode) .trainingWorkspaceMode(workspaceMode) .inferenceWorkspaceMode(workspaceMode) .cudnnAlgoMode(cudnnAlgoMode) .convolutionMode(ConvolutionMode.Truncate) .graphBuilder(); if(!skipReduction) { graph.addLayer("stem_conv1", new ConvolutionLayer.Builder(3, 3).stride(2, 2).nOut(stemFilters).hasBias(false) .cudnnAlgoMode(cudnnAlgoMode).build(), "input"); } else { graph.addLayer("stem_conv1", new ConvolutionLayer.Builder(3, 3).stride(1, 1).nOut(stemFilters).hasBias(false) .cudnnAlgoMode(cudnnAlgoMode).build(), "input"); } graph.addLayer("stem_bn1", new BatchNormalization.Builder().eps(1e-3).gamma(0.9997).build(), "stem_conv1"); String inputX = "stem_bn1"; String inputP = null; if(!skipReduction) { Pair stem1 = reductionA(graph, (int) Math.floor(stemFilters / Math.pow(filterMultiplier,2)), "stem1", "stem_conv1", inputP); Pair stem2 = reductionA(graph, (int) Math.floor(stemFilters / (filterMultiplier)), "stem2", stem1.getFirst(), stem1.getSecond()); inputX = stem2.getFirst(); inputP = stem2.getSecond(); } for(int i = 0; i < numBlocks; i++){ Pair block = normalA(graph, filters, String.valueOf(i), inputX, inputP); inputX = block.getFirst(); inputP = block.getSecond(); } String inputP0; Pair reduce = reductionA(graph, filters * filterMultiplier, "reduce"+numBlocks, inputX, inputP); inputX = reduce.getFirst(); inputP0 = reduce.getSecond(); if(!skipReduction) inputP = inputP0; for(int i = 0; i < numBlocks; i++){ Pair block = normalA(graph, filters * filterMultiplier, String.valueOf(i+numBlocks+1), inputX, inputP); inputX = block.getFirst(); inputP = block.getSecond(); } reduce = reductionA(graph, filters * (int)Math.pow(filterMultiplier, 2), "reduce"+(2*numBlocks), inputX, inputP); inputX = reduce.getFirst(); inputP0 = reduce.getSecond(); if(!skipReduction) inputP = inputP0; for(int i = 0; i < numBlocks; i++){ Pair block = normalA(graph, filters * (int) Math.pow(filterMultiplier, 2), String.valueOf(i+(2*numBlocks)+1), inputX, inputP); inputX = block.getFirst(); inputP = block.getSecond(); } // output graph .addLayer("act", new ActivationLayer(Activation.RELU), inputX) .addLayer("avg_pool", new GlobalPoolingLayer.Builder(PoolingType.AVG).build(), "act") .addLayer("output", new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT) .activation(Activation.SOFTMAX).build(), "avg_pool") .setOutputs("output") ; return graph; } @Override public ModelMetaData metaData() { return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN); } @Override public void setInputShape(int[][] inputShape) { this.inputShape = inputShape[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy