All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.zoo.model.Xception Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.deeplearning4j.zoo.model;

import lombok.AllArgsConstructor;
import lombok.Builder;
import lombok.NoArgsConstructor;
import org.deeplearning4j.common.resources.DL4JResources;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.conf.*;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.graph.ElementWiseVertex;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.*;
import org.deeplearning4j.nn.graph.ComputationGraph;
import org.deeplearning4j.nn.weights.WeightInit;
import org.deeplearning4j.zoo.ModelMetaData;
import org.deeplearning4j.zoo.PretrainedType;
import org.deeplearning4j.zoo.ZooModel;
import org.deeplearning4j.zoo.ZooType;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.AdaDelta;
import org.nd4j.linalg.learning.config.AdaGrad;
import org.nd4j.linalg.learning.config.IUpdater;
import org.nd4j.linalg.lossfunctions.LossFunctions;

/**
 * U-Net
 *
 * An implementation of Xception in Deeplearning4j. A novel deep convolutional neural network architecture inspired by
 * Inception, where Inception modules have been replaced with depthwise separable convolutions.
 *
 * 

Paper: https://arxiv.org/abs/1610.02357

*

ImageNet weights for this model are available and have been converted from * https://keras.io/applications/.

* * @author Justin Long (crockpotveggies) * */ @AllArgsConstructor @Builder public class Xception extends ZooModel { @Builder.Default private long seed = 1234; @Builder.Default private int[] inputShape = new int[] {3, 299, 299}; @Builder.Default private int numClasses = 0; @Builder.Default private WeightInit weightInit = WeightInit.RELU; @Builder.Default private IUpdater updater = new AdaDelta(); @Builder.Default private CacheMode cacheMode = CacheMode.NONE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; private Xception() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return DL4JResources.getURLString("models/xception_dl4j_inference.v2.zip"); else return null; } @Override public long pretrainedChecksum(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return 3277876097L; else return 0L; } @Override public Class modelType() { return ComputationGraph.class; } @Override public ComputationGraph init() { ComputationGraphConfiguration.GraphBuilder graph = graphBuilder(); graph.addInputs("input").setInputTypes(InputType.convolutional(inputShape[2], inputShape[1], inputShape[0])); ComputationGraphConfiguration conf = graph.build(); ComputationGraph model = new ComputationGraph(conf); model.init(); return model; } public ComputationGraphConfiguration.GraphBuilder graphBuilder() { ComputationGraphConfiguration.GraphBuilder graph = new NeuralNetConfiguration.Builder().seed(seed) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) .updater(updater) .weightInit(weightInit) .l2(4e-5) .miniBatch(true) .cacheMode(cacheMode) .trainingWorkspaceMode(workspaceMode) .inferenceWorkspaceMode(workspaceMode) .convolutionMode(ConvolutionMode.Truncate) .graphBuilder(); graph // block1 .addLayer("block1_conv1", new ConvolutionLayer.Builder(3,3).stride(2,2).nOut(32).hasBias(false) .cudnnAlgoMode(cudnnAlgoMode).build(), "input") .addLayer("block1_conv1_bn", new BatchNormalization(), "block1_conv1") .addLayer("block1_conv1_act", new ActivationLayer(Activation.RELU), "block1_conv1_bn") .addLayer("block1_conv2", new ConvolutionLayer.Builder(3,3).stride(1,1).nOut(64).hasBias(false) .cudnnAlgoMode(cudnnAlgoMode).build(), "block1_conv1_act") .addLayer("block1_conv2_bn", new BatchNormalization(), "block1_conv2") .addLayer("block1_conv2_act", new ActivationLayer(Activation.RELU), "block1_conv2_bn") // residual1 .addLayer("residual1_conv", new ConvolutionLayer.Builder(1,1).stride(2,2).nOut(128).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block1_conv2_act") .addLayer("residual1", new BatchNormalization(), "residual1_conv") // block2 .addLayer("block2_sepconv1", new SeparableConvolution2D.Builder(3,3).nOut(128).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block1_conv2_act") .addLayer("block2_sepconv1_bn", new BatchNormalization(), "block2_sepconv1") .addLayer("block2_sepconv1_act",new ActivationLayer(Activation.RELU), "block2_sepconv1_bn") .addLayer("block2_sepconv2", new SeparableConvolution2D.Builder(3,3).nOut(128).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block2_sepconv1_act") .addLayer("block2_sepconv2_bn", new BatchNormalization(), "block2_sepconv2") .addLayer("block2_pool", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(3,3).stride(2,2) .convolutionMode(ConvolutionMode.Same).build(), "block2_sepconv2_bn") .addVertex("add1", new ElementWiseVertex(ElementWiseVertex.Op.Add), "block2_pool", "residual1") // residual2 .addLayer("residual2_conv", new ConvolutionLayer.Builder(1,1).stride(2,2).nOut(256).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "add1") .addLayer("residual2", new BatchNormalization(), "residual2_conv") // block3 .addLayer("block3_sepconv1_act", new ActivationLayer(Activation.RELU), "add1") .addLayer("block3_sepconv1", new SeparableConvolution2D.Builder(3,3).nOut(256).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block3_sepconv1_act") .addLayer("block3_sepconv1_bn", new BatchNormalization(), "block3_sepconv1") .addLayer("block3_sepconv2_act", new ActivationLayer(Activation.RELU), "block3_sepconv1_bn") .addLayer("block3_sepconv2", new SeparableConvolution2D.Builder(3,3).nOut(256).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block3_sepconv2_act") .addLayer("block3_sepconv2_bn", new BatchNormalization(), "block3_sepconv2") .addLayer("block3_pool", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(3,3).stride(2,2) .convolutionMode(ConvolutionMode.Same).build(), "block3_sepconv2_bn") .addVertex("add2", new ElementWiseVertex(ElementWiseVertex.Op.Add), "block3_pool", "residual2") // residual3 .addLayer("residual3_conv", new ConvolutionLayer.Builder(1,1).stride(2,2).nOut(728).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "add2") .addLayer("residual3", new BatchNormalization(), "residual3_conv") // block4 .addLayer("block4_sepconv1_act", new ActivationLayer(Activation.RELU), "add2") .addLayer("block4_sepconv1", new SeparableConvolution2D.Builder(3,3).nOut(728).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block4_sepconv1_act") .addLayer("block4_sepconv1_bn", new BatchNormalization(), "block4_sepconv1") .addLayer("block4_sepconv2_act", new ActivationLayer(Activation.RELU), "block4_sepconv1_bn") .addLayer("block4_sepconv2", new SeparableConvolution2D.Builder(3,3).nOut(728).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block4_sepconv2_act") .addLayer("block4_sepconv2_bn", new BatchNormalization(), "block4_sepconv2") .addLayer("block4_pool", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(3,3).stride(2,2) .convolutionMode(ConvolutionMode.Same).build(), "block4_sepconv2_bn") .addVertex("add3", new ElementWiseVertex(ElementWiseVertex.Op.Add), "block4_pool", "residual3"); // towers int residual = 3; int block = 5; for(int i = 0; i < 8; i++) { String previousInput = "add"+residual; String blockName = "block"+block; graph .addLayer(blockName+"_sepconv1_act", new ActivationLayer(Activation.RELU), previousInput) .addLayer(blockName+"_sepconv1", new SeparableConvolution2D.Builder(3,3).nOut(728).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), blockName+"_sepconv1_act") .addLayer(blockName+"_sepconv1_bn", new BatchNormalization(), blockName+"_sepconv1") .addLayer(blockName+"_sepconv2_act", new ActivationLayer(Activation.RELU), blockName+"_sepconv1_bn") .addLayer(blockName+"_sepconv2", new SeparableConvolution2D.Builder(3,3).nOut(728).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), blockName+"_sepconv2_act") .addLayer(blockName+"_sepconv2_bn", new BatchNormalization(), blockName+"_sepconv2") .addLayer(blockName+"_sepconv3_act", new ActivationLayer(Activation.RELU), blockName+"_sepconv2_bn") .addLayer(blockName+"_sepconv3", new SeparableConvolution2D.Builder(3,3).nOut(728).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), blockName+"_sepconv3_act") .addLayer(blockName+"_sepconv3_bn", new BatchNormalization(), blockName+"_sepconv3") .addVertex("add"+(residual+1), new ElementWiseVertex(ElementWiseVertex.Op.Add), blockName+"_sepconv3_bn", previousInput); residual++; block++; } // residual12 graph.addLayer("residual12_conv", new ConvolutionLayer.Builder(1,1).stride(2,2).nOut(1024).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "add" + residual) .addLayer("residual12", new BatchNormalization(), "residual12_conv"); // block13 graph .addLayer("block13_sepconv1_act", new ActivationLayer(Activation.RELU), "add11" ) .addLayer("block13_sepconv1", new SeparableConvolution2D.Builder(3,3).nOut(728).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block13_sepconv1_act") .addLayer("block13_sepconv1_bn", new BatchNormalization(), "block13_sepconv1") .addLayer("block13_sepconv2_act", new ActivationLayer(Activation.RELU), "block13_sepconv1_bn") .addLayer("block13_sepconv2", new SeparableConvolution2D.Builder(3,3).nOut(1024).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block13_sepconv2_act") .addLayer("block13_sepconv2_bn", new BatchNormalization(), "block13_sepconv2") .addLayer("block13_pool", new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX).kernelSize(3,3).stride(2,2) .convolutionMode(ConvolutionMode.Same).build(), "block13_sepconv2_bn") .addVertex("add12", new ElementWiseVertex(ElementWiseVertex.Op.Add), "block13_pool", "residual12"); // block14 graph .addLayer("block14_sepconv1", new SeparableConvolution2D.Builder(3,3).nOut(1536).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "add12") .addLayer("block14_sepconv1_bn", new BatchNormalization(), "block14_sepconv1") .addLayer("block14_sepconv1_act", new ActivationLayer(Activation.RELU), "block14_sepconv1_bn") .addLayer("block14_sepconv2", new SeparableConvolution2D.Builder(3,3).nOut(2048).hasBias(false) .convolutionMode(ConvolutionMode.Same).cudnnAlgoMode(cudnnAlgoMode).build(), "block14_sepconv1_act") .addLayer("block14_sepconv2_bn", new BatchNormalization(), "block14_sepconv2") .addLayer("block14_sepconv2_act", new ActivationLayer(Activation.RELU), "block14_sepconv2_bn") .addLayer("avg_pool", new GlobalPoolingLayer.Builder(PoolingType.AVG).build(), "block14_sepconv2_act") .addLayer("predictions", new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT) .nOut(numClasses) .activation(Activation.SOFTMAX).build(), "avg_pool") .setOutputs("predictions") ; return graph; } @Override public ModelMetaData metaData() { return new ModelMetaData(new int[][] {inputShape}, 1, ZooType.CNN); } @Override public void setInputShape(int[][] inputShape) { this.inputShape = inputShape[0]; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy