org.deeplearning4j.zoo.util.imagenet.ImageNetLabels Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.zoo.util.imagenet;
import org.deeplearning4j.common.resources.DL4JResources;
import org.deeplearning4j.zoo.util.BaseLabels;
import org.nd4j.base.Preconditions;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.shade.jackson.databind.ObjectMapper;
import java.io.File;
import java.io.IOException;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.ArrayList;
import java.util.HashMap;
/**
* Helper class with a static method that returns the label description.
*
* @author susaneraly
*/
public class ImageNetLabels extends BaseLabels {
private static final String jsonResource = "imagenet_class_index.json";
private ArrayList predictionLabels;
public ImageNetLabels() throws IOException {
this.predictionLabels = getLabels();
}
protected ArrayList getLabels() throws IOException {
File localFile = getResourceFile();
if (predictionLabels == null) {
HashMap> jsonMap;
jsonMap = new ObjectMapper().readValue(localFile, HashMap.class);
predictionLabels = new ArrayList<>(jsonMap.size());
for (int i = 0; i < jsonMap.size(); i++) {
predictionLabels.add(jsonMap.get(String.valueOf(i)).get(1));
}
}
return predictionLabels;
}
/**
* Returns the description of tne nth class in the 1000 classes of ImageNet.
* @param n
* @return
*/
public String getLabel(int n) {
return predictionLabels.get(n);
}
@Override
protected URL getURL() {
try {
return DL4JResources.getURL("resources/imagenet/" + jsonResource);
} catch (MalformedURLException e){
throw new RuntimeException(e);
}
}
@Override
protected String resourceName() {
return jsonResource;
}
@Override
protected String resourceMD5() {
return "c2c37ea517e94d9795004a39431a14cb";
}
/**
* Given predictions from the trained model this method will return a string
* listing the top five matches and the respective probabilities
* @param predictions
* @return
*/
public String decodePredictions(INDArray predictions) {
Preconditions.checkState(predictions.size(1) == predictionLabels.size(), "Invalid input array:" +
" expected array with size(1) equal to numLabels (%s), got array with shape %s", predictionLabels.size(), predictions.shape());
String predictionDescription = "";
int[] top5 = new int[5];
float[] top5Prob = new float[5];
//brute force collect top 5
int i = 0;
for (int batch = 0; batch < predictions.size(0); batch++) {
predictionDescription += "Predictions for batch ";
if (predictions.size(0) > 1) {
predictionDescription += String.valueOf(batch);
}
predictionDescription += " :";
INDArray currentBatch = predictions.getRow(batch).dup();
while (i < 5) {
top5[i] = Nd4j.argMax(currentBatch, 1).getInt(0);
top5Prob[i] = currentBatch.getFloat(batch, top5[i]);
currentBatch.putScalar(0, top5[i], 0);
predictionDescription += "\n\t" + String.format("%3f", top5Prob[i] * 100) + "%, "
+ predictionLabels.get(top5[i]);
i++;
}
}
return predictionDescription;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy