
org.deeplearning4j.spark.impl.layer.DL4jWorker Maven / Gradle / Ivy
The newest version!
/*
*
* * Copyright 2015 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.spark.impl.layer;
import org.apache.spark.api.java.function.Function;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.LayerFactory;
import org.deeplearning4j.nn.api.Model;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.layers.OutputLayer;
import org.deeplearning4j.nn.layers.factory.LayerFactories;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
/**
* This is considered the "Worker"
* This is the code that will run the .fitDataSet() method on the network
*
* the issue here is that this is getting called 1x per record
* and before we could call it in a more controlled mini-batch setting
*
* @author josh
* @author Adam Gibson
*/
public class DL4jWorker implements Function {
private final Model network;
public DL4jWorker(String json,INDArray params) {
NeuralNetConfiguration conf = NeuralNetConfiguration.fromJson(json);
LayerFactory layerFactory = LayerFactories.getFactory(conf.getLayer());
if(layerFactory == null)
throw new IllegalStateException("Please specify a layer factory");
this.network = layerFactory.create(conf);
int numParams = this.network.numParams();
if(numParams != params.length())
throw new IllegalStateException("Number of params for configured network was " + numParams + " while the specified parameter vector length was " + params.length());
Layer network = (Layer) this.network;
network.setParams(params);
}
@Override
public INDArray call(DataSet v1) throws Exception {
try {
Layer network = (Layer) this.network;
if(network instanceof OutputLayer) {
OutputLayer o = (OutputLayer) network;
o.fit(v1);
}
else
network.fit(v1.getFeatureMatrix());
return network.params();
}catch(Exception e) {
System.err.println("Error with dataset " + v1.numExamples());
throw e;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy