org.deeplearning4j.spark.data.shuffle.SplitDataSetExamplesPairFlatMapFunction Maven / Gradle / Ivy
The newest version!
/*
* ******************************************************************************
* *
* *
* * This program and the accompanying materials are made available under the
* * terms of the Apache License, Version 2.0 which is available at
* * https://www.apache.org/licenses/LICENSE-2.0.
* *
* * See the NOTICE file distributed with this work for additional
* * information regarding copyright ownership.
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* * License for the specific language governing permissions and limitations
* * under the License.
* *
* * SPDX-License-Identifier: Apache-2.0
* *****************************************************************************
*/
package org.deeplearning4j.spark.data.shuffle;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.nd4j.linalg.dataset.DataSet;
import scala.Tuple2;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Random;
public class SplitDataSetExamplesPairFlatMapFunction implements PairFlatMapFunction {
private transient Random r;
private int maxKeyIndex;
public SplitDataSetExamplesPairFlatMapFunction(int maxKeyIndex) {
this.maxKeyIndex = maxKeyIndex;
}
@Override
public Iterator> call(DataSet dataSet) throws Exception {
if (r == null) {
r = new Random();
}
List singleExamples = dataSet.asList();
List> out = new ArrayList<>(singleExamples.size());
for (DataSet ds : singleExamples) {
out.add(new Tuple2<>(r.nextInt(maxKeyIndex), ds));
}
return out.iterator();
}
}