org.deeplearning4j.spark.api.stats.StatsCalculationHelper Maven / Gradle / Ivy
package org.deeplearning4j.spark.api.stats;
import org.deeplearning4j.spark.api.stats.CommonSparkTrainingStats;
import org.deeplearning4j.spark.api.stats.SparkTrainingStats;
import org.deeplearning4j.spark.api.worker.ExecuteWorkerFlatMap;
import org.deeplearning4j.spark.api.worker.ExecuteWorkerMultiDataSetFlatMap;
import org.deeplearning4j.spark.stats.BaseEventStats;
import org.deeplearning4j.spark.stats.EventStats;
import org.deeplearning4j.spark.stats.ExampleCountEventStats;
import org.deeplearning4j.spark.time.TimeSource;
import org.deeplearning4j.spark.time.TimeSourceProvider;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
/**
* A helper class for collecting stats in {@link ExecuteWorkerFlatMap} and {@link ExecuteWorkerMultiDataSetFlatMap}
*
* @author Alex Black
*/
public class StatsCalculationHelper {
private long methodStartTime;
private long returnTime;
private long initalModelBefore;
private long initialModelAfter;
private long lastDataSetBefore;
private long lastProcessBefore;
private int totalExampleCount;
private List dataSetGetTimes = new ArrayList<>();
private List processMiniBatchTimes = new ArrayList<>();
private TimeSource timeSource = TimeSourceProvider.getInstance();
public void logMethodStartTime(){
methodStartTime = timeSource.currentTimeMillis();
}
public void logReturnTime(){
returnTime = timeSource.currentTimeMillis();
}
public void logInitialModelBefore(){
initalModelBefore = timeSource.currentTimeMillis();
}
public void logInitialModelAfter(){
initialModelAfter = timeSource.currentTimeMillis();
}
public void logNextDataSetBefore(){
lastDataSetBefore = timeSource.currentTimeMillis();
}
public void logNextDataSetAfter(int numExamples){
long now = timeSource.currentTimeMillis();
long duration = now - lastDataSetBefore;
dataSetGetTimes.add(new BaseEventStats(lastDataSetBefore,duration));
totalExampleCount += numExamples;
}
public void logProcessMinibatchBefore(){
lastProcessBefore = timeSource.currentTimeMillis();
}
public void logProcessMinibatchAfter(){
long now = timeSource.currentTimeMillis();
long duration = now - lastProcessBefore;
processMiniBatchTimes.add(new BaseEventStats(lastProcessBefore,duration));
}
public CommonSparkTrainingStats build(SparkTrainingStats masterSpecificStats){
List totalTime = new ArrayList<>();
totalTime.add(new ExampleCountEventStats(methodStartTime,returnTime-methodStartTime, totalExampleCount));
List initTime = new ArrayList<>();
initTime.add(new BaseEventStats(initalModelBefore,initialModelAfter-initalModelBefore));
return new CommonSparkTrainingStats.Builder()
.trainingMasterSpecificStats(masterSpecificStats)
.workerFlatMapTotalTimeMs(totalTime)
.workerFlatMapGetInitialModelTimeMs(initTime)
.workerFlatMapDataSetGetTimesMs(dataSetGetTimes)
.workerFlatMapProcessMiniBatchTimesMs(processMiniBatchTimes)
.build();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy