org.deeplearning4j.spark.impl.common.SplitPartitionsFunction Maven / Gradle / Ivy
package org.deeplearning4j.spark.impl.common;
import lombok.AllArgsConstructor;
import org.apache.spark.api.java.function.Function2;
import java.util.*;
/**
* SplitPartitionsFunction is used to split a RDD (using {@link org.apache.spark.api.java.JavaRDD#mapPartitionsWithIndex(Function2, boolean)}
* via filtering.
* It is similar in design to {@link org.apache.spark.api.java.JavaRDD#randomSplit(double[])} however it is less prone to
* producing imbalanced splits that that method. Specifically, {@link org.apache.spark.api.java.JavaRDD#randomSplit(double[])}
* splts each element individually (i.e., randomly determine a new split for each element at random), whereas this method
* chooses one out of every numSplits objects per output split. Exactly which of these is done randomly.
*
* @author Alex Black
*/
@AllArgsConstructor
public class SplitPartitionsFunction implements Function2, Iterator> {
private final int splitIndex;
private final int numSplits;
private final long baseRngSeed;
@Override
public Iterator call(Integer v1, Iterator iter) throws Exception {
long thisRngSeed = baseRngSeed + v1;
Random r = new Random(thisRngSeed);
List list = new ArrayList<>();
for( int i=0; i outputList = new ArrayList<>();
int i=0;
while(iter.hasNext()){
if(i%numSplits == 0) Collections.shuffle(list, r);
T next = iter.next();
if(list.get(i%numSplits) == splitIndex) outputList.add(next);
i++;
}
return outputList.iterator();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy