All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.spark.stats.StatsUtils Maven / Gradle / Ivy

package org.deeplearning4j.spark.stats;

import org.apache.commons.io.FilenameUtils;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaSparkContext;
import org.deeplearning4j.spark.api.stats.SparkTrainingStats;
import org.deeplearning4j.spark.util.SparkUtils;
import org.deeplearning4j.ui.api.Component;
import org.deeplearning4j.ui.api.LengthUnit;
import org.deeplearning4j.ui.components.chart.ChartHistogram;
import org.deeplearning4j.ui.components.chart.ChartLine;
import org.deeplearning4j.ui.components.chart.ChartTimeline;
import org.deeplearning4j.ui.components.chart.style.StyleChart;
import org.deeplearning4j.ui.components.component.ComponentDiv;
import org.deeplearning4j.ui.components.component.style.StyleDiv;
import org.deeplearning4j.ui.components.text.ComponentText;
import org.deeplearning4j.ui.components.text.style.StyleText;
import org.deeplearning4j.ui.standalone.StaticPageUtil;
import scala.Tuple3;

import java.awt.*;
import java.io.IOException;
import java.util.*;
import java.util.List;

/**
 * Utility methods for Spark training stats
 *
 * @author Alex Black
 */
public class StatsUtils {

    public static final long DEFAULT_MAX_TIMELINE_SIZE_MS = 20 * 60 * 1000;  //20 minutes

    private StatsUtils() {
    }

    public static void exportStats(List list, String outputDirectory, String filename, String delimiter, SparkContext sc) throws IOException {
        String path = FilenameUtils.concat(outputDirectory, filename);
        exportStats(list, path, delimiter, sc);
    }

    public static void exportStats(List list, String outputPath, String delimiter, SparkContext sc) throws IOException {
        StringBuilder sb = new StringBuilder();
        boolean first = true;
        for (EventStats e : list) {
            if (first) sb.append(e.getStringHeader(delimiter)).append("\n");
            sb.append(e.asString(delimiter)).append("\n");
            first = false;
        }
        SparkUtils.writeStringToFile(outputPath, sb.toString(), sc);
    }

    public static String getDurationAsString(List list, String delim) {
        StringBuilder sb = new StringBuilder();
        int num = list.size();
        int count = 0;
        for (EventStats e : list) {
            sb.append(e.getDurationMs());
            if (count++ < num - 1) sb.append(delim);
        }
        return sb.toString();
    }

    public static void exportStatsAsHtml(SparkTrainingStats sparkTrainingStats, String path, JavaSparkContext sc) throws Exception {
        exportStatsAsHtml(sparkTrainingStats, path, sc.sc());
    }

    /**
     * Generate and export a HTML representation (including charts, etc) of the Spark training statistics
* Note: exporting is done via Spark, so the path here can be a local file, HDFS, etc. * * @param sparkTrainingStats Stats to generate HTML page for * @param path Path to export. May be local or HDFS * @param sc Spark context * @throws Exception IO errors or error generating HTML file */ public static void exportStatsAsHtml(SparkTrainingStats sparkTrainingStats, String path, SparkContext sc) throws Exception { exportStatsAsHtml(sparkTrainingStats, DEFAULT_MAX_TIMELINE_SIZE_MS, path, sc); } /** * Generate and export a HTML representation (including charts, etc) of the Spark training statistics
* Note: exporting is done via Spark, so the path here can be a local file, HDFS, etc. * * @param sparkTrainingStats Stats to generate HTML page for * @param path Path to export. May be local or HDFS * @param maxTimelineSizeMs maximum amount of activity to show in a single timeline plot (multiple plots will be used if training exceeds this amount of time) * @param sc Spark context * @throws Exception IO errors or error generating HTML file */ public static void exportStatsAsHtml(SparkTrainingStats sparkTrainingStats, long maxTimelineSizeMs, String path, SparkContext sc) throws Exception { Set keySet = sparkTrainingStats.getKeySet(); List components = new ArrayList<>(); StyleChart styleChart = new StyleChart.Builder() .backgroundColor(Color.WHITE) .width(700, LengthUnit.Px) .height(400, LengthUnit.Px) .build(); StyleText styleText = new StyleText.Builder() .color(Color.BLACK) .fontSize(20) .build(); Component headerText = new ComponentText("Deeplearning4j - Spark Training Analysis", styleText); Component header = new ComponentDiv(new StyleDiv.Builder().height(40, LengthUnit.Px).width(100, LengthUnit.Percent).build(), headerText); components.add(header); Set keySetInclude = new HashSet<>(); for (String s : keySet) if (sparkTrainingStats.defaultIncludeInPlots(s)) keySetInclude.add(s); Collections.addAll(components, getTrainingStatsTimelineChart(sparkTrainingStats, keySetInclude, maxTimelineSizeMs)); for (String s : keySet) { List list = new ArrayList<>(sparkTrainingStats.getValue(s)); Collections.sort(list, new StartTimeComparator()); double[] x = new double[list.size()]; double[] duration = new double[list.size()]; double minDur = Double.MAX_VALUE; double maxDur = -Double.MAX_VALUE; for (int i = 0; i < duration.length; i++) { x[i] = i; duration[i] = list.get(i).getDurationMs(); minDur = Math.min(minDur, duration[i]); maxDur = Math.max(maxDur, duration[i]); } Component line = new ChartLine.Builder(s, styleChart) .addSeries("Duration", x, duration) .setYMin(minDur == maxDur ? minDur-1 : null) .setYMax(minDur == maxDur ? minDur+1 : null) .build(); //Also build a histogram... Component hist = null; if(minDur != maxDur && !list.isEmpty()) hist = getHistogram(duration, 20, s, styleChart); Component[] temp; if (hist != null) { temp = new Component[]{line, hist}; } else { temp = new Component[]{line}; } components.add(new ComponentDiv(new StyleDiv.Builder().width(100, LengthUnit.Percent).build(), temp)); //TODO this is really ugly if(!list.isEmpty() && (list.get(0) instanceof ExampleCountEventStats || list.get(0) instanceof PartitionCountEventStats)){ boolean exCount = list.get(0) instanceof ExampleCountEventStats; double[] y = new double[list.size()]; double miny = Double.MAX_VALUE; double maxy = -Double.MAX_VALUE; for( int i=0; i { @Override public int compare(EventStats o1, EventStats o2) { return Long.compare(o1.getStartTime(), o2.getStartTime()); } } private static Component[] getTrainingStatsTimelineChart(SparkTrainingStats stats, Set includeSet, long maxDurationMs) { Set> uniqueTuples = new HashSet<>(); Set machineIDs = new HashSet<>(); Set jvmIDs = new HashSet<>(); Map machineShortNames = new HashMap<>(); Map jvmShortNames = new HashMap<>(); long earliestStart = Long.MAX_VALUE; long latestEnd = Long.MIN_VALUE; for (String s : includeSet) { List list = stats.getValue(s); for (EventStats e : list) { machineIDs.add(e.getMachineID()); jvmIDs.add(e.getJvmID()); uniqueTuples.add(new Tuple3<>(e.getMachineID(), e.getJvmID(), e.getThreadID())); earliestStart = Math.min(earliestStart, e.getStartTime()); latestEnd = Math.max(latestEnd, e.getStartTime() + e.getDurationMs()); } } int count = 0; for (String s : machineIDs) { machineShortNames.put(s, "PC " + count++); } count = 0; for (String s : jvmIDs) { jvmShortNames.put(s, "JVM " + count++); } int nLanes = uniqueTuples.size(); List> outputOrder = new ArrayList<>(uniqueTuples); Collections.sort(outputOrder, new TupleComparator()); Color[] colors = getColors(includeSet.size()); Map colorMap = new HashMap<>(); count = 0; for (String s : includeSet) { colorMap.put(s, colors[count++]); } //Create key for charts: List tempList = new ArrayList<>(); for (String s : includeSet) { String key = stats.getShortNameForKey(s) + " - " + s; tempList.add(new ComponentDiv( new StyleDiv.Builder() .backgroundColor(colorMap.get(s)) .width(33.3, LengthUnit.Percent) .height(25, LengthUnit.Px) .floatValue(StyleDiv.FloatValue.left) .build(), new ComponentText(key, new StyleText.Builder().fontSize(11).build()))); } Component key = new ComponentDiv(new StyleDiv.Builder().width(100, LengthUnit.Percent).build(), tempList); //How many charts? int nCharts = (int) ((latestEnd - earliestStart) / maxDurationMs); if (nCharts < 1) nCharts = 1; long[] chartStartTimes = new long[nCharts]; long[] chartEndTimes = new long[nCharts]; for (int i = 0; i < nCharts; i++) { chartStartTimes[i] = earliestStart + i * maxDurationMs; chartEndTimes[i] = earliestStart + (i + 1) * maxDurationMs; } List>> entriesByLane = new ArrayList<>(); for (int c = 0; c < nCharts; c++) { entriesByLane.add(new ArrayList>()); for (int i = 0; i < nLanes; i++) { entriesByLane.get(c).add(new ArrayList()); } } for (String s : includeSet) { List list = stats.getValue(s); for (EventStats e : list) { if (e.getDurationMs() == 0) continue; long start = e.getStartTime(); long end = start + e.getDurationMs(); int chartIdx = -1; for (int j = 0; j < nCharts; j++) { if (start >= chartStartTimes[j] && start < chartEndTimes[j]) { chartIdx = j; } } if (chartIdx == -1) chartIdx = nCharts - 1; Tuple3 tuple = new Tuple3<>(e.getMachineID(), e.getJvmID(), e.getThreadID()); int idx = outputOrder.indexOf(tuple); Color c = colorMap.get(s); // ChartTimeline.TimelineEntry entry = new ChartTimeline.TimelineEntry(null, start, end, c); ChartTimeline.TimelineEntry entry = new ChartTimeline.TimelineEntry(stats.getShortNameForKey(s), start, end, c); entriesByLane.get(chartIdx).get(idx).add(entry); } } //Sort each lane by start time: for (int i = 0; i < nCharts; i++) { for (List l : entriesByLane.get(i)) { Collections.sort(l, new Comparator() { @Override public int compare(ChartTimeline.TimelineEntry o1, ChartTimeline.TimelineEntry o2) { return Long.compare(o1.getStartTimeMs(), o2.getStartTimeMs()); } }); } } StyleChart sc = new StyleChart.Builder() .width(1280, LengthUnit.Px) .height(50 * nLanes + (60 + 20 + 25), LengthUnit.Px) .margin(LengthUnit.Px, 60, 20, 200, 10) //top, bottom, left, right .build(); List list = new ArrayList<>(nCharts); for (int j = 0; j < nCharts; j++) { ChartTimeline.Builder b = new ChartTimeline.Builder("Timeline: Training Activities", sc); int i = 0; for (List l : entriesByLane.get(j)) { Tuple3 t3 = outputOrder.get(i); String name = machineShortNames.get(t3._1()) + ", " + jvmShortNames.get(t3._2()) + ", Thread " + t3._3(); b.addLane(name, l); i++; } list.add(b.build()); } list.add(key); return list.toArray(new Component[list.size()]); } private static class TupleComparator implements Comparator> { @Override public int compare(Tuple3 o1, Tuple3 o2) { if (o1._1().equals(o2._1())) { //Equal machine IDs, so sort on JVM ids if (o1._2().equals(o2._2())) { //Equal machine AND JVM IDs, so sort on thread ID return Long.compare(o1._3(), o2._3()); } else { return o1._2().compareTo(o2._2()); } } else { return o1._1().compareTo(o2._1()); } } } private static Color[] getColors(int nColors) { Color[] c = new Color[nColors]; double step; if (nColors <= 1) step = 1.0; else step = 1.0 / (nColors + 1); for (int i = 0; i < nColors; i++) { // c[i] = Color.getHSBColor((float) step * i, 0.4f, 0.75f); //step hue; fixed saturation + variance to (hopefully) ensure readability of labels if(i%2 == 0) c[i] = Color.getHSBColor((float) step * i, 0.4f, 0.75f); //step hue; fixed saturation + variance to (hopefully) ensure readability of labels else c[i] = Color.getHSBColor((float) step * i,1.0f, 1.0f); //step hue; fixed saturation + variance to (hopefully) ensure readability of labels } return c; } private static Component getHistogram(double[] data, int nBins, String title, StyleChart styleChart) { double min = Double.MAX_VALUE; double max = -Double.MAX_VALUE; for (double d : data) { min = Math.min(min, d); max = Math.max(max, d); } if (min == max) return null; double[] bins = new double[nBins + 1]; int[] counts = new int[nBins]; double step = (max - min) / nBins; for (int i = 0; i < bins.length; i++) bins[i] = min + i * step; for (double d : data) { for (int i = 0; i < bins.length - 1; i++) { if (d >= bins[i] && d < bins[i + 1]) { counts[i]++; break; } } if (d == bins[bins.length - 1]) counts[counts.length - 1]++; } ChartHistogram.Builder b = new ChartHistogram.Builder(title, styleChart); for (int i = 0; i < bins.length - 1; i++) { b.addBin(bins[i], bins[i + 1], counts[i]); } return b.build(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy