org.deeplearning4j.spark.earlystopping.SparkDataSetLossCalculator Maven / Gradle / Ivy
/*
*
* * Copyright 2016 Skymind,Inc.
* *
* * Licensed under the Apache License, Version 2.0 (the "License");
* * you may not use this file except in compliance with the License.
* * You may obtain a copy of the License at
* *
* * http://www.apache.org/licenses/LICENSE-2.0
* *
* * Unless required by applicable law or agreed to in writing, software
* * distributed under the License is distributed on an "AS IS" BASIS,
* * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* * See the License for the specific language governing permissions and
* * limitations under the License.
*
*/
package org.deeplearning4j.spark.earlystopping;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.deeplearning4j.earlystopping.scorecalc.ScoreCalculator;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.spark.impl.multilayer.SparkDl4jMultiLayer;
import org.nd4j.linalg.dataset.DataSet;
/** Score calculator to calculate the total loss for the {@link MultiLayerNetwork} on that data set (data set
* as a {@link JavaRDD}), using Spark.
* Typically used to calculate the loss on a test set.
*/
public class SparkDataSetLossCalculator implements ScoreCalculator {
private JavaRDD data;
private boolean average;
private SparkContext sc;
/**Calculate the score (loss function value) on a given data set (usually a test set)
*
* @param data Data set to calculate the score for
* @param average Whether to return the average (sum of loss / N) or just (sum of loss)
*/
public SparkDataSetLossCalculator(JavaRDD data, boolean average, SparkContext sc) {
this.data = data;
this.average = average;
this.sc = sc;
}
@Override
public double calculateScore(MultiLayerNetwork network) {
SparkDl4jMultiLayer net = new SparkDl4jMultiLayer(sc,network,null);
return net.calculateScore(data,average);
}
}