All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.spark.datavec.DataVecSequencePairDataSetFunction Maven / Gradle / Ivy

There is a newer version: 1.0.0-beta_spark_2
Show newest version
/*
 *  * Copyright 2016 Skymind,Inc.
 *  *
 *  *    Licensed under the Apache License, Version 2.0 (the "License");
 *  *    you may not use this file except in compliance with the License.
 *  *    You may obtain a copy of the License at
 *  *
 *  *        http://www.apache.org/licenses/LICENSE-2.0
 *  *
 *  *    Unless required by applicable law or agreed to in writing, software
 *  *    distributed under the License is distributed on an "AS IS" BASIS,
 *  *    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  *    See the License for the specific language governing permissions and
 *  *    limitations under the License.
 */

package org.deeplearning4j.spark.datavec;

import org.apache.spark.api.java.function.Function;
import org.datavec.api.io.WritableConverter;
import org.datavec.api.writable.Writable;
import org.datavec.common.data.NDArrayWritable;
import org.deeplearning4j.datasets.datavec.SequenceRecordReaderDataSetIterator;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.dataset.api.DataSetPreProcessor;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.NDArrayIndex;
import org.nd4j.linalg.util.FeatureUtil;
import scala.Tuple2;

import java.io.Serializable;
import java.util.Iterator;
import java.util.List;

/**Map {@code Tuple2>,Collection>} objects (out of a TWO datavec-spark
 *  sequence record reader functions) to  DataSet objects for Spark training.
 * Analogous to {@link SequenceRecordReaderDataSetIterator}, but in the context of Spark.
 * Supports loading data from a TWO sources only; hence supports many-to-one and one-to-many situations.
 * see {@link DataVecSequenceDataSetFunction} for the single file version
 * @author Alex Black
 */
public class DataVecSequencePairDataSetFunction implements Function>,List>>,DataSet>, Serializable {
    /**Alignment mode for dealing with input/labels of differing lengths (for example, one-to-many and many-to-one type situations).
     * For example, might have 10 time steps total but only one label at end for sequence classification.
* EQUAL_LENGTH: Default. Assume that label and input time series are of equal length
* ALIGN_START: Align the label/input time series at the first time step, and zero pad either the labels or * the input at the end (pad whichever is shorter)
* ALIGN_END: Align the label/input at the last time step, zero padding either the input or the labels as required
*/ public enum AlignmentMode { EQUAL_LENGTH, ALIGN_START, ALIGN_END } private final boolean regression; private final int numPossibleLabels; private final AlignmentMode alignmentMode; private final DataSetPreProcessor preProcessor; private final WritableConverter converter; /** Constructor for equal length and no conversion of labels (i.e., regression or already in one-hot representation). * No data set proprocessor or writable converter */ public DataVecSequencePairDataSetFunction(){ this(-1, true); } /**Constructor for equal length, no data set preprocessor or writable converter * @see #DataVecSequencePairDataSetFunction(int, boolean, AlignmentMode, DataSetPreProcessor, WritableConverter) */ public DataVecSequencePairDataSetFunction(int numPossibleLabels, boolean regression){ this(numPossibleLabels, regression, AlignmentMode.EQUAL_LENGTH); } /**Constructor for data with a specified alignment mode, no data set preprocessor or writable converter * @see #DataVecSequencePairDataSetFunction(int, boolean, AlignmentMode, DataSetPreProcessor, WritableConverter) */ public DataVecSequencePairDataSetFunction(int numPossibleLabels, boolean regression, AlignmentMode alignmentMode){ this(numPossibleLabels, regression, alignmentMode, null, null); } /** * @param numPossibleLabels Number of classes for classification (not used if regression = true) * @param regression False for classification, true for regression * @param alignmentMode Alignment mode for data. See {@link DataVecSequencePairDataSetFunction.AlignmentMode} * @param preProcessor DataSetPreprocessor (may be null) * @param converter WritableConverter (may be null) */ public DataVecSequencePairDataSetFunction(int numPossibleLabels, boolean regression, AlignmentMode alignmentMode, DataSetPreProcessor preProcessor, WritableConverter converter){ this.numPossibleLabels = numPossibleLabels; this.regression = regression; this.alignmentMode = alignmentMode; this.preProcessor = preProcessor; this.converter = converter; } @Override public DataSet call(Tuple2>,List>> input) throws Exception { List> featuresSeq = input._1(); List> labelsSeq = input._2(); int featuresLength = featuresSeq.size(); int labelsLength = labelsSeq.size(); Iterator> fIter = featuresSeq.iterator(); Iterator> lIter = labelsSeq.iterator(); INDArray inputArr = null; INDArray outputArr = null; int[] idx = new int[3]; int i = 0; while(fIter.hasNext()){ List step = fIter.next(); if (i == 0) { int[] inShape = new int[]{1,step.size(),featuresLength}; inputArr = Nd4j.create(inShape); } Iterator timeStepIter = step.iterator(); int f = 0; idx[1] = 0; while (timeStepIter.hasNext()) { Writable current = timeStepIter.next(); if(converter != null) current = converter.convert(current); try { inputArr.putScalar(idx, current.toDouble()); } catch (UnsupportedOperationException e) { // This isn't a scalar, so check if we got an array already if (current instanceof NDArrayWritable) { inputArr.get(NDArrayIndex.point(idx[0]), NDArrayIndex.all(), NDArrayIndex.point(idx[2])) .putRow(0, ((NDArrayWritable)current).get()); } else { throw e; } } idx[1] = ++f; } idx[2] = ++i; } idx = new int[3]; i = 0; while(lIter.hasNext()){ List step = lIter.next(); if (i == 0) { int[] outShape = new int[]{1,(regression ? step.size() : numPossibleLabels),labelsLength}; outputArr = Nd4j.create(outShape); } Iterator timeStepIter = step.iterator(); int f = 0; idx[1] = 0; if(regression){ //Load all values without modification while (timeStepIter.hasNext()) { Writable current = timeStepIter.next(); if(converter != null) current = converter.convert(current); outputArr.putScalar(idx, current.toDouble()); idx[1] = ++f; } } else { //Expect a single value (index) -> convert to one-hot vector Writable value = timeStepIter.next(); int labelClassIdx = value.toInt(); INDArray line = FeatureUtil.toOutcomeVector(labelClassIdx, numPossibleLabels); outputArr.tensorAlongDimension(i, 1).assign(line); //1d from [1,nOut,timeSeriesLength] -> tensor i along dimension 1 is at time i } idx[2] = ++i; } DataSet ds; if(alignmentMode == AlignmentMode.EQUAL_LENGTH || featuresLength == labelsLength){ ds = new DataSet(inputArr,outputArr); } else if(alignmentMode == AlignmentMode.ALIGN_END){ if(featuresLength > labelsLength ){ //Input longer, pad output INDArray newOutput = Nd4j.create(1,outputArr.size(1),featuresLength); newOutput.get(NDArrayIndex.point(0),NDArrayIndex.all(), NDArrayIndex.interval(featuresLength-labelsLength,featuresLength)) .assign(outputArr); //Need an output mask array, but not an input mask array INDArray outputMask = Nd4j.create(1,featuresLength); for( int j=featuresLength-labelsLength; j labelsLength ){ //Input longer, pad output INDArray newOutput = Nd4j.create(1,outputArr.size(1),featuresLength); newOutput.get(NDArrayIndex.point(0),NDArrayIndex.all(), NDArrayIndex.interval(0,labelsLength)).assign(outputArr); //Need an output mask array, but not an input mask array INDArray outputMask = Nd4j.create(1,featuresLength); for( int j=0; j




© 2015 - 2024 Weber Informatics LLC | Privacy Policy