org.deeplearning4j.scalnet.layers.convolutional.Upsampling.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scalnet_2.12 Show documentation
Show all versions of scalnet_2.12 Show documentation
A Scala wrapper for Deeplearning4j, inspired by Keras. Scala + DL + Spark + GPUs
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.scalnet.layers.convolutional
import org.deeplearning4j.scalnet.layers.core.Node
/**
* Base upsampling layer
*
* @author Max Pumperla
*/
class Upsampling(protected val dimension: Int,
protected val size: List[Int],
protected val nChannels: Int = 0,
protected val nIn: Option[List[Int]] = None,
override val name: String = "")
extends Node {
override def inputShape: List[Int] = nIn.getOrElse(List(nChannels))
override def outputShape: List[Int] = {
val nOutChannels: Int =
if (inputShape.nonEmpty) inputShape.last
else 0
if (inputShape.lengthCompare(dimension + 1) == 0) {
List[List[Int]](inputShape.init, size).transpose
.map(x => x.head * x(1)) :+ nOutChannels
} else if (nOutChannels > 0) List(nOutChannels)
else List()
}
}