org.deeplearning4j.scalnet.layers.embeddings.EmbeddingLayer.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scalnet_2.12 Show documentation
Show all versions of scalnet_2.12 Show documentation
A Scala wrapper for Deeplearning4j, inspired by Keras. Scala + DL + Spark + GPUs
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.scalnet.layers.embeddings
import org.deeplearning4j.nn.conf.layers
import org.deeplearning4j.nn.weights.WeightInit
import org.deeplearning4j.scalnet.layers.core.Layer
import org.deeplearning4j.scalnet.regularizers.{ NoRegularizer, WeightRegularizer }
import org.nd4j.linalg.activations.Activation
class EmbeddingLayer(nIn: Int,
nOut: Int,
activation: Activation,
weightInit: WeightInit,
regularizer: WeightRegularizer,
dropOut: Double = 0.0,
override val name: String = "")
extends Layer {
override def compile: org.deeplearning4j.nn.conf.layers.Layer =
new layers.EmbeddingLayer.Builder()
.nIn(nIn)
.nOut(nOut)
.activation(activation)
.weightInit(weightInit)
.l1(regularizer.l1)
.l2(regularizer.l2)
.dropOut(dropOut)
.name(name)
.build()
override def inputShape: List[Int] = List(nIn, nOut)
override def outputShape: List[Int] = List(nOut, nIn)
}
object EmbeddingLayer {
def apply(nIn: Int,
nOut: Int,
activation: Activation = Activation.IDENTITY,
weightInit: WeightInit = WeightInit.XAVIER,
regularizer: WeightRegularizer = NoRegularizer(),
dropOut: Double = 0.0): EmbeddingLayer =
new EmbeddingLayer(
nIn,
nOut,
activation,
weightInit,
regularizer,
dropOut
)
}