All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.deeplearning4j.scalnet.layers.pooling.AvgPooling2D.scala Maven / Gradle / Ivy

Go to download

A Scala wrapper for Deeplearning4j, inspired by Keras. Scala + DL + Spark + GPUs

There is a newer version: 1.0.0-beta7
Show newest version
/*******************************************************************************
  * Copyright (c) 2015-2018 Skymind, Inc.
  *
  * This program and the accompanying materials are made available under the
  * terms of the Apache License, Version 2.0 which is available at
  * https://www.apache.org/licenses/LICENSE-2.0.
  *
  * Unless required by applicable law or agreed to in writing, software
  * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
  * License for the specific language governing permissions and limitations
  * under the License.
  *
  * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/
package org.deeplearning4j.scalnet.layers.pooling

import org.deeplearning4j.nn.conf.layers.SubsamplingLayer
import org.deeplearning4j.scalnet.layers.convolutional.Convolution
import org.deeplearning4j.scalnet.layers.core.Layer

/**
  * 2D average pooling layer in neural net architectures.
  *
  * @author Max Pumperla
  */
class AvgPooling2D(kernelSize: List[Int],
                   stride: List[Int] = List(1, 1),
                   padding: List[Int] = List(0, 0),
                   dilation: List[Int] = List(1, 1),
                   nIn: Option[List[Int]] = None,
                   override val name: String = "")
    extends Convolution(dimension = 2, kernelSize, stride, padding, dilation, 0, nIn, 0)
    with Layer {
  if (kernelSize.length != 2 || stride.length != 2 || padding.length != 2 || dilation.length != 2) {
    throw new IllegalArgumentException("Kernel, stride, padding and dilation lists must all be length 2.")
  }

  override def reshapeInput(nIn: List[Int]): AvgPooling2D =
    new AvgPooling2D(kernelSize, stride, padding, dilation, Some(nIn), name)

  override def compile: org.deeplearning4j.nn.conf.layers.Layer =
    new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.AVG)
      .kernelSize(kernelSize.head, kernelSize.last)
      .dilation(dilation.head, dilation.last)
      .stride(stride.head, stride.last)
      .name(name)
      .build()
}

object AvgPooling2D {
  def apply(kernelSize: List[Int],
            stride: List[Int] = List(1, 1),
            padding: List[Int] = List(0, 0),
            dilation: List[Int] = List(1, 1),
            nIn: Option[List[Int]] = None,
            name: String = null): AvgPooling2D =
    new AvgPooling2D(kernelSize, stride, padding, dilation, nIn, name)
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy