org.deeplearning4j.scalnet.layers.pooling.AvgPooling3D.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of scalnet_2.12 Show documentation
Show all versions of scalnet_2.12 Show documentation
A Scala wrapper for Deeplearning4j, inspired by Keras. Scala + DL + Spark + GPUs
/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
package org.deeplearning4j.scalnet.layers.pooling
import org.deeplearning4j.nn.conf.layers.Subsampling3DLayer
import org.deeplearning4j.scalnet.layers.convolutional.Convolution
import org.deeplearning4j.scalnet.layers.core.Layer
/**
* 3D average pooling layer in neural net architectures.
*
* @author Max Pumperla
*/
class AvgPooling3D(kernelSize: List[Int],
stride: List[Int] = List(1, 1, 1),
padding: List[Int] = List(0, 0, 0),
dilation: List[Int] = List(1, 1, 1),
nIn: Option[List[Int]] = None,
override val name: String = "")
extends Convolution(dimension = 3, kernelSize, stride, padding, dilation, 0, nIn, 0)
with Layer {
if (kernelSize.length != 3 || stride.length != 3 || padding.length != 3 || dilation.length != 3) {
throw new IllegalArgumentException("Kernel, stride, padding and dilation lists must all be length 3.")
}
override def reshapeInput(nIn: List[Int]): AvgPooling3D =
new AvgPooling3D(kernelSize, stride, padding, dilation, Some(nIn), name)
override def compile: org.deeplearning4j.nn.conf.layers.Layer =
new Subsampling3DLayer.Builder()
.poolingType(Subsampling3DLayer.PoolingType.AVG)
.kernelSize(kernelSize.head, kernelSize(1), kernelSize(2))
.stride(stride.head, stride(1), stride(2))
.name(name)
.build()
}
object AvgPooling3D {
def apply(kernelSize: List[Int],
stride: List[Int] = List(1, 1, 1),
padding: List[Int] = List(0, 0, 0),
dilation: List[Int] = List(1, 1, 1),
nIn: Option[List[Int]] = None,
name: String = null): AvgPooling3D =
new AvgPooling3D(kernelSize, stride, padding, dilation, nIn, name)
}