org.djutils.draw.line.ConvexHull Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of djutils-draw Show documentation
Show all versions of djutils-draw Show documentation
DJUTILS - Delft Java Utilities Drawing and animation primitives
The newest version!
package org.djutils.draw.line;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import org.djutils.draw.DrawRuntimeException;
import org.djutils.draw.Drawable2d;
import org.djutils.draw.bounds.Bounds2d;
import org.djutils.draw.point.Point2d;
import org.djutils.exceptions.Throw;
/**
* ConvexHull.java. Compute the convex hull of a collection of Point2d or Drawable2d. All implementations here return a
* Polygon2d object. If the convex hull of the input would be a single point, the implementations will throw a
* DrawRuntimeException because a single point does not make a valid Polygon2d.
*
* Copyright (c) 2020-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
* BSD-style license. See DJUTILS License.
*
* @author Alexander Verbraeck
* @author Peter Knoppers
*/
public final class ConvexHull
{
/**
* Do not instantiate.
*/
private ConvexHull()
{
// Do not instantiate
}
/**
* Compute the convex hull of a collection of Point2d objects.
* @param iterator Iterator<Point2d>; iterator that shall return all the points for which the convex hull is to be
* computed
* @return Polygon2d; the convex hull of the points
*/
public static Polygon2d convexHull(final Iterator iterator)
{
List list = new ArrayList<>();
iterator.forEachRemaining(list::add);
return convexHullAlshamrani(list);
}
/**
* Compute the convex hull of one or more Drawable2d objects.
* @param drawable2d Drawable2d...; the Drawable2d objects
* @return Polygon2d; the convex hull of the Drawable2d objects
* @throws NullPointerException when any of the drawable2d object is null
* @throws IllegalArgumentException when zero arguments are provided
*/
public static Polygon2d convexHull(final Drawable2d... drawable2d) throws NullPointerException, IllegalArgumentException
{
return convexHull(Bounds2d.pointsOf(drawable2d));
}
/**
* Construct a Bounds2d for a Collection of Drawable2d objects.
* @param drawableCollection Collection<Drawable2d>; the collection
* @return Polygon2d; the convex hull of the Drawable2d objects
* @throws NullPointerException when the collection is null, or contains null values
* @throws IllegalArgumentException when the collection is empty
*/
public static Polygon2d convexHull(final Collection drawableCollection)
throws NullPointerException, IllegalArgumentException
{
Throw.whenNull(drawableCollection, "drawableCollection");
Throw.when(drawableCollection.isEmpty(), DrawRuntimeException.class, "drawableCollection may not be empty");
return convexHull(Bounds2d.pointsOf(drawableCollection));
}
/**
* Compute the convex hull of a list of Point2d objects. The input list will not be modified.
* @param list List<Point2d>; the list of Point2d objects
* @return Polygon2d; the convex hull of the points
*/
public static Polygon2d convexHull(final List list)
{
return convexHullAlshamrani(list);
}
/**
* Return whether moving from a through b to c, the turn at b is counter-clockwise.
* @param a Point2d; point a
* @param b Point2d; point b
* @param c Point2d; point c
* @return boolean; true if the turn at b is counter clockwise; false if there is not turn; or it is clockwise
*/
private static boolean ccw(final Point2d a, final Point2d b, final Point2d c)
{
// System.out.println("left " + ((b.x - a.x) * (c.y - a.y)) + ", right " + ((b.y - a.y) * (c.x - a.x)));
return ((b.x - a.x) * (c.y - a.y)) > ((b.y - a.y) * (c.x - a.x));
}
/**
* Repeatedly remove the last point if not counter clockwise with new point; then add the new point. If the new point is
* equal to the last point in the list; do nothing.
* @param list List<Point2d>; the list of points
* @param newPoint Point2d; the point that will be added.
*/
private static void cleanAndAppend(final List list, final Point2d newPoint)
{
Point2d last = list.get(list.size() - 1);
if (last.x == newPoint.x && last.y == newPoint.y)
{
return;
}
while (list.size() >= 2 && !ccw(list.get(list.size() - 2), list.get(list.size() - 1), newPoint))
{
list.remove(list.size() - 1);
}
list.add(newPoint);
}
/**
* Implementation of the convex hull algorithm by Reham Alshamrani c.s.; see
* A Preprocessing Technique for Fast Convex
* Hull Computation.
* @param list List<Point2d>; list of the points (will not be modified)
* @return Polygon2d; the convex hull of the points
* @throws NullPointerException when the list is null
* @throws DrawRuntimeException when the list contains too few points
*/
public static Polygon2d convexHullAlshamrani(final List list) throws NullPointerException, DrawRuntimeException
{
// Find the four extreme points
Throw.whenNull(list, "list");
Throw.when(list.size() < 1, DrawRuntimeException.class, "Too few points in list");
Point2d minX = list.get(0); // Initialize to the first point in list to avoid checking for null on each iteration
Point2d minY = list.get(0);
Point2d maxX = list.get(0);
Point2d maxY = list.get(0);
for (Point2d point : list)
{
if (minX.x > point.x || minX.x == point.x && minX.y > point.y)
{
minX = point;
}
if (minY.y > point.y || minY.y == point.y && minY.x < point.x)
{
minY = point;
}
if (maxX.x < point.x || maxX.x == point.x && maxX.y > point.y)
{
maxX = point;
}
if (maxY.y < point.y || maxY.y == point.y && maxY.x < point.x)
{
maxY = point;
}
}
// Filter and group the points into priority queues that order by x value (tie breaker is y value)
// Alshamrani does not show how he tests that a point is outside each edge of the four extreme points. We use ccw.
// Alshamrani poorly documents the ordering method for the four queues when the primary component values are the same.
// Testing has shown that sorting a filled ArrayList is faster than putting the same elements one by one in a TreeSet.
Comparator forwardComparator = new Comparator()
{
@Override
public int compare(final Point2d point1, final Point2d point2)
{
if (point1.x == point2.x)
{
return (int) Math.signum(point1.y - point2.y);
}
return (int) Math.signum(point1.x - point2.x);
}
};
Comparator reverseComparator = new Comparator()
{
@Override
public int compare(final Point2d point1, final Point2d point2)
{
if (point1.x == point2.x)
{
return (int) Math.signum(point1.y - point2.y);
}
return (int) Math.signum(point2.x - point1.x);
}
};
List lowerLeft = new ArrayList<>();
List lowerRight = new ArrayList<>();
List upperRight = new ArrayList<>();
List upperLeft = new ArrayList<>();
for (Point2d point : list)
{
if (point.x <= minY.x && point.y <= minX.y)
{
if (ccw(minX, point, minY))
{
lowerLeft.add(point);
}
}
else if (point.x >= minY.x && point.y <= maxX.y)
{
if (ccw(minY, point, maxX))
{
lowerRight.add(point);
}
}
else if (point.x >= maxY.x && point.y >= maxX.y)
{
if (ccw(maxX, point, maxY))
{
upperRight.add(point);
}
}
else if (point.x <= maxY.x && point.y >= minX.y)
{
if (ccw(maxY, point, minX))
{
upperLeft.add(point);
}
}
}
// System.out.println(String.format("minX %s, minY %s, maxX %s, maxY %s", minX, minY, maxX, maxY));
// System.out.println(String.format("total: %d, ll: %d (%.0f%%), lr: %d (%.0f%%), ur: %d (%.0f%%), ul: %d (%.0f%%)",
// list.size(), lowerLeft.size(), 100.0 * lowerLeft.size() / list.size(), lowerRight.size(),
// 100.0 * lowerRight.size() / list.size(), upperRight.size(), 100.0 * upperRight.size() / list.size(),
// upperLeft.size(), 100.0 * upperLeft.size() / list.size()));
Collections.sort(lowerLeft, forwardComparator);
Collections.sort(lowerRight, forwardComparator);
Collections.sort(upperRight, reverseComparator);
Collections.sort(upperLeft, reverseComparator);
// Construct the convex hull
List result = new ArrayList<>();
result.add(minX);
for (Point2d point : lowerLeft)
{
cleanAndAppend(result, point);
}
cleanAndAppend(result, minY);
for (Point2d point : lowerRight)
{
cleanAndAppend(result, point);
}
cleanAndAppend(result, maxX);
for (Point2d point : upperRight)
{
cleanAndAppend(result, point);
}
cleanAndAppend(result, maxY);
for (Point2d point : upperLeft)
{
cleanAndAppend(result, point);
}
return new Polygon2d(result);
}
/**
* Implementation of Andrew's Monotone Chain convex hull algorithm. This implementation (sorts) modifies the provided list
* of points!
* @param list List<Point2d>; list of the points (will be modified)
* @return Polygon2d; the convex hull of the points
* @throws NullPointerException when the list is null
* @throws DrawRuntimeException when the list contains too few points
*/
public static Polygon2d convexHullMonotone(final List list) throws NullPointerException, DrawRuntimeException
{
Collections.sort(list, new Comparator()
{
@Override
public int compare(final Point2d point1, final Point2d point2)
{
if (point1.x == point2.x)
{
return (int) Math.signum(point1.y - point2.y);
}
return (int) Math.signum(point1.x - point2.x);
}
});
// That sort operation was O(N log (N)); the remainder is O(N)
List result = new ArrayList<>();
// Lower hull
for (Point2d p : list)
{
while (result.size() >= 2 && !ccw(result.get(result.size() - 2), result.get(result.size() - 1), p))
{
result.remove(result.size() - 1);
}
result.add(p);
}
// Upper hull
int lowLimit = result.size() + 1;
for (int i = list.size() - 1; i >= 0; i--)
{
Point2d p = list.get(i);
while (result.size() >= lowLimit && !ccw(result.get(result.size() - 2), result.get(result.size() - 1), p))
{
result.remove(result.size() - 1);
}
result.add(p);
}
if (result.size() > 0)
{
result.remove(result.size() - 1);
}
// else; zero points; the constructor of the Polygon2d will throw a DrawRuntimeException
return new Polygon2d(result);
}
}