All Downloads are FREE. Search and download functionalities are using the official Maven repository.

de.tudarmstadt.ukp.jwktl.parser.util.SimilarityUtils Maven / Gradle / Ivy

Go to download

JWKTL (Java Wiktionary Library) is a Java-based API that enables efficient and structured access to the information encoded in the English and the German Wiktionary edition, including sense definitions, part of speech tags, etymology, example sentences, translations, semantic relations and many other lexical information types.

The newest version!
/*******************************************************************************
 * Copyright 2013
 * Ubiquitous Knowledge Processing (UKP) Lab
 * Technische Universität Darmstadt
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/
package de.tudarmstadt.ukp.jwktl.parser.util;

import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 * 

Some convenient string utilities. * * @author Lizhen Qu * */ public class SimilarityUtils { protected static final Pattern NGRAM_PATTERN = Pattern.compile("^_?[^0-9\\?!\\-_/]*_?$"); /** * Compute N Grams. * @param startOrder * @param maxOrder * @param text * @return a n gram to frequency map. */ protected static Map computeNGrams(int startOrder, int maxOrder, final String text) { Map ngram2count = new HashMap<>(); String[] tokens = text.split("\\s"); for (int order = startOrder; order <= maxOrder; ++order) { for (String token : tokens) { token = "_" + token + "_"; for (int i = 0; i < (token.length() - order + 1); i++) { String ngram = token.substring(i, i + order); Matcher matcher = NGRAM_PATTERN.matcher(ngram); if (!matcher.find()) { continue; } else if (!ngram2count.containsKey(ngram)) { ngram2count.put(ngram, 1); } else { int score = ngram2count.remove(ngram); ngram2count.put(ngram, ++score); } } } } if (ngram2count.containsKey("_")) { int blanksScore = ngram2count.remove("_"); ngram2count.put("_", blanksScore / 2); } return ngram2count; } /** *

Calculate word frequency. * * @param text a text to process * @return a map of word to frequency. */ protected static Map computeWord2count(final String text) { Map word2count = new HashMap<>(); Pattern wordPattern = Pattern.compile("\\w+"); Matcher matcher = wordPattern.matcher(text); while(matcher.find()) { String w = matcher.group().toLowerCase(); if (word2count.containsKey(w)) word2count.put(w, word2count.get(w) + 1); else word2count.put(w, 1); } return word2count; } /** *

Calculate similarity between two sets of n grams * * @param ngramsA a set of n grams * @param ngramsB a set of n grams * @return the similarity value. */ protected static double similarity(final Map ngramsA, final Map ngramsB) { double a = 0d; double b = 0d; double common = 0; double all = 0; Map ngramAll = new HashMap<>(); ngramAll.putAll(ngramsB); for (Entry entry : ngramsA.entrySet()) { int value = 0; if (ngramAll.containsKey(entry.getKey())) { if (ngramAll.get(entry.getKey()) < entry.getValue()) { ngramAll.put(entry.getKey(), entry.getValue()); value = entry.getValue(); } else value = ngramAll.get(entry.getKey()); } else { value = entry.getValue(); ngramAll.put(entry.getKey(), value); } all += value; } for (Integer nGramACount : ngramsA.values()) a += Math.log(nGramACount / all); for (Integer nGramBCount : ngramsB.values()) b += Math.log(nGramBCount / all); for (Entry ngramA : ngramsA.entrySet()) { if (ngramsB.containsKey(ngramA.getKey())) { int count = ngramAll.get(ngramA.getKey()); if (count < ngramA.getValue()) common += Math.log(count / all); else common += Math.log(ngramA.getValue() / all); } } return 2 * common / (a + b); } /** *

Calculate similarity between two text based on trigram. * @param textA text A * @param textB text B * @return similarity value */ public static double similarity(final String textA, final String textB) { Map ngramA = computeNGrams(3, 3, textA); Map ngramB = computeNGrams(3, 3, textB); return similarity(ngramA, ngramB); } /** *

Calculate string similarity based on ugram of words. * * @param textA text A * @param textB text B * @return similarity value */ public static double wordSim(final String textA, final String textB) { Map ngramA = computeWord2count(textA); Map ngramB = computeWord2count(textB); return similarity(ngramA, ngramB); } /* *

Trigram similarity measure * * @param textA text A * @param textB text B * @return trigram similarity value * / public static double triSim(final String textA, final String textB) { Map ngramA = computeNGrams(3, 3, textA); Map ngramB = computeNGrams(3, 3, textB); int common = 0; int allA = 0; int allB = 0; for (int count : ngramA.values()) { allA += count; } for (int count : ngramB.values()) { allB += count; } for (String ngram : ngramA.keySet()) { if (ngramB.containsKey(ngram)) { int countA = ngramA.get(ngram); int countB = ngramB.get(ngram); if (countA < countB) { common += countA; } else { common += countB; } } } return 1.0 / (1.0 + allA + allB - 2 * common); } */ }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy