All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.dkpro.tc.features.ngram.LucenePOSNGramUFE Maven / Gradle / Ivy

/*******************************************************************************
 * Copyright 2015
 * Ubiquitous Knowledge Processing (UKP) Lab
 * Technische Universität Darmstadt
 * 
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * 
 *   http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 ******************************************************************************/
package org.dkpro.tc.features.ngram;

import java.util.HashSet;
import java.util.Set;

import org.apache.uima.fit.descriptor.TypeCapability;
import org.apache.uima.jcas.JCas;

import de.tudarmstadt.ukp.dkpro.core.api.frequency.util.FrequencyDistribution;
import org.dkpro.tc.api.exception.TextClassificationException;
import org.dkpro.tc.api.features.ClassificationUnitFeatureExtractor;
import org.dkpro.tc.api.features.Feature;
import org.dkpro.tc.api.type.TextClassificationUnit;
import org.dkpro.tc.features.ngram.base.LucenePOSNGramFeatureExtractorBase;
import org.dkpro.tc.features.ngram.util.NGramUtils;

/**
 * Extracts POS n-grams.
 */
@TypeCapability(inputs = { "de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Sentence",
        "de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Token" })
public class LucenePOSNGramUFE
    extends LucenePOSNGramFeatureExtractorBase
    implements ClassificationUnitFeatureExtractor
{

	@Override
	public Set extract(JCas view, TextClassificationUnit classificationUnit)
			throws TextClassificationException {
    	
        Set features = new HashSet();
        FrequencyDistribution documentPOSNgrams = null;
        documentPOSNgrams = NGramUtils.getDocumentPosNgrams(view, classificationUnit, posNgramMinN, posNgramMaxN, useCanonicalTags);

        for (String topNgram : topKSet.getKeys()) {
            if (documentPOSNgrams.getKeys().contains(topNgram)) {
                features.add(new Feature(getFeaturePrefix() + "_" + topNgram, 1));
            }
            else {
                features.add(new Feature(getFeaturePrefix() + "_" + topNgram, 0));
            }
        }
        return features;   
	}
}






© 2015 - 2025 Weber Informatics LLC | Privacy Policy