org.dkpro.tc.ml.crfsuite.writer.CrfSuiteDataWriter Maven / Gradle / Ivy
/*******************************************************************************
* Copyright 2018
* Ubiquitous Knowledge Processing (UKP) Lab
* Technische Universität Darmstadt
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
******************************************************************************/
package org.dkpro.tc.ml.crfsuite.writer;
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import org.apache.commons.io.FileUtils;
import org.apache.uima.analysis_engine.AnalysisEngineProcessException;
import org.dkpro.tc.api.features.Instance;
import org.dkpro.tc.core.Constants;
import org.dkpro.tc.core.io.DataWriter;
import com.google.gson.Gson;
public class CrfSuiteDataWriter
implements DataWriter
{
CrfSuiteFeatureFormatExtractionIterator iterator;
File outputDirectory;
boolean useSparse;
String learningMode;
boolean applyWeigthing;
private BufferedWriter bw = null;
private Gson gson = new Gson();
private File classifierFormatOutputFile;
@Override
public void writeGenericFormat(Collection instances)
throws AnalysisEngineProcessException
{
try {
initGeneric();
// bulk-write - in sequence mode this keeps the instances together
// that
// belong to the same sequence!
Instance[] array = instances.toArray(new Instance[0]);
bw.write(gson.toJson(array) + "\n");
bw.close();
bw = null;
}
catch (Exception e) {
throw new AnalysisEngineProcessException(e);
}
}
private void initGeneric() throws IOException
{
if (bw != null) {
return;
}
bw = new BufferedWriter(
new OutputStreamWriter(
new FileOutputStream(
new File(outputDirectory, Constants.GENERIC_FEATURE_FILE), true),
"utf-8"));
}
@Override
public void transformFromGeneric() throws Exception
{
BufferedReader reader = new BufferedReader(new InputStreamReader(
new FileInputStream(new File(outputDirectory, Constants.GENERIC_FEATURE_FILE)),
"utf-8"));
BufferedWriter writer = new BufferedWriter(
new OutputStreamWriter(new FileOutputStream(classifierFormatOutputFile), "utf-8"));
String line = null;
while ((line = reader.readLine()) != null) {
Instance[] instance = gson.fromJson(line, Instance[].class);
List ins = new ArrayList<>(Arrays.asList(instance));
Iterator sequenceIterator = new CrfSuiteFeatureFormatExtractionIterator(
ins);
while (sequenceIterator.hasNext()) {
String features = sequenceIterator.next().toString();
writer.write(features);
writer.write("\n");
}
}
reader.close();
writer.close();
}
@Override
public void writeClassifierFormat(Collection instances)
throws AnalysisEngineProcessException
{
try {
initClassifierFormat();
Iterator sequenceIterator = new CrfSuiteFeatureFormatExtractionIterator(
new ArrayList(instances));
while (sequenceIterator.hasNext()) {
String features = sequenceIterator.next().toString();
bw.write(features);
bw.write("\n");
}
bw.close();
bw = null;
}
catch (Exception e) {
throw new AnalysisEngineProcessException(e);
}
}
private void initClassifierFormat() throws Exception
{
if (bw != null) {
return;
}
bw = new BufferedWriter(new OutputStreamWriter(
new FileOutputStream(classifierFormatOutputFile, true), "utf-8"));
}
@Override
public void init(File outputDirectory, boolean useSparse, String learningMode,
boolean applyWeighting, String[] outcomes)
throws Exception
{
this.outputDirectory = outputDirectory;
this.useSparse = useSparse;
this.learningMode = learningMode;
this.applyWeigthing = applyWeighting;
classifierFormatOutputFile = new File(outputDirectory,
Constants.FILENAME_DATA_IN_CLASSIFIER_FORMAT);
// Caution: DKPro Lab imports (aka copies!) the data of the train task
// as test task. We use
// appending mode for streaming. We might errornously append the old
// training file with
// testing data!
// Force delete the old training file to make sure we start with a
// clean, empty file
if (classifierFormatOutputFile.exists()) {
FileUtils.forceDelete(classifierFormatOutputFile);
}
File genericOutputFile = new File(outputDirectory, getGenericFileName());
if (genericOutputFile.exists()) {
FileUtils.forceDelete(genericOutputFile);
}
}
@Override
public boolean canStream()
{
return true;
}
@Override
public String getGenericFileName()
{
return Constants.GENERIC_FEATURE_FILE;
}
@Override
public void close() throws Exception
{
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy