All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.topologi.diffx.algorithm.DiffXKumarRangan Maven / Gradle / Ivy

Go to download

docx4j is a library which helps you to work with the Office Open XML file format as used in docx documents, pptx presentations, and xlsx spreadsheets.

The newest version!
/*
 * This file is part of the DiffX library.
 *
 * For licensing information please see the file license.txt included in the release.
 * A copy of this licence can also be found at
 *   http://www.opensource.org/licenses/artistic-license-2.0.php
 */
package com.topologi.diffx.algorithm;

import java.io.IOException;

import com.topologi.diffx.format.DiffXFormatter;
import com.topologi.diffx.sequence.EventSequence;

/**
 * Performs the diff comparison using an optimized version of the linear space algorithm
 * of S.Kiran Kumar and C.Pandu Rangan.
 * 
 * 

Implementation note: this algorithm effectively detects the correct changes in the * sequences, but suffers from two main problems: *

    *
  • When the events are formatted directly from reading the matrix, the XML is not * necessarily well-formed, this occurs mostly when some elements are swapped, because * the closing tags will not necessarily reported in an order that allows the XML to * be well-formed.
    * Using the {@link com.topologi.diffx.format.SmartXMLFormatter} helps in solving the * problem as it maintains a stack of the elements that are being written and actually * ignores the name of the closing element, so all the elements are closed properly. *
  • *
* *

For S. Kiran Kumar and C. Pandu Rangan. A linear space algorithm for the LCS problem, * Acta Informatica. Volume 24 , Issue 3 (June 1987); Copyright Springer-Verlag 1987 * *

This class reuses portions of code originally written by Mikko Koivisto and Tuomo Saarni. * *

* http://dblp.uni-trier.de/rec/bibtex/journals/acta/KumarR87 * *

http://users.utu.fi/~tuiisa/Java/ * * @author Christophe Lauret * @version 9 March 2005 */ public final class DiffXKumarRangan extends DiffXAlgorithmBase { /** * Set to true to show debug info. */ private static final boolean DEBUG = false; // state variables ---------------------------------------------------------------------------- // Global integer arrays needed in the computation of the LCS private int[] R1, R2; private int[] LL, LL1, LL2; /** * Global integer variable needed in the computation of the LCS. */ private int R; /** * Global integer variable needed in the computation of the LCS. */ private int S; /** * A counter for the index of the second sequence when generating the diff. */ private int iSeq2 = 0; /** * The length of the LCS. */ private int length = -1; /** * The formatter to use for the write diff function. */ private DiffXFormatter df = null; // constructor -------------------------------------------------------------------------------- /** * Creates a new DiffXAlgorithmBase. * * @param seq0 The first sequence to compare. * @param seq1 The second sequence to compare. */ public DiffXKumarRangan(EventSequence seq0, EventSequence seq1) { super(seq0, seq1); } // methods ------------------------------------------------------------------------------------ /** * Calculates the length of LCS and returns it. * *

If the length is calculated already it'll not be calculated repeatedly. * *

This algorithm starts from the length of the first sequence as the maximum possible * LCS and reduces the length for every difference with the second sequence. * *

The time complexity is O(n(m-p)) and the space complexity is O(n+m). * * @return The length of LCS */ public int length() { if (this.length < 0) { this.length = calculateLength(); } return this.length; } /** * Writes the diff sequence using the specified formatter. * * @param formatter The formatter that will handle the output. * * @throws IOException If thrown by the formatter. */ public void process(DiffXFormatter formatter) throws IOException { this.length = calculateLength(); this.df = formatter; // execute the LCS algorithm for the complete sequences generateLCS(0, this.length1 - 1, 0, this.length2 - 1, this.length1, this.length2, this.length); } // helpers ------------------------------------------------------------------------------------ /** * Initialises the state variables. */ private void init() { this.R1 = new int[this.length2+1]; this.R2 = new int[this.length2+1]; this.LL = new int[this.length2+1]; this.LL1 = new int[this.length2+1]; this.LL2 = new int[this.length2+1]; this.iSeq2 = 0; } /** * Calculates the LCS length. * * @return The LCS length. */ private int calculateLength() { init(); this.R = 0; this.S = this.length1 + 1; // iterate for every difference with the first sequence while (this.S > this.R) { this.S--; // fill up R2 up to the first difference using the entire sequences fillOne(0, this.length1 - 1, 0, this.length2 - 1, this.length1, this.length2, 1); // copy the content of R2 to R1 up to R copyUpTo(this.R2, this.R1, this.R); } // both R1 and R2 now contain the indexes(+1) of the first sequence that form the LCS if (DEBUG) { System.err.println("LCS length="+this.S); } return this.S; } /** * This is used to find the index from where the longest common subsequence so far can * be found. * *

The time complexity is O(n+m) and the space complexity is O(n). * * @param start1 The start index of the first sequence. * @param end1 The last index of the first sequence. * @param start2 The start index of the second sequence. * @param end2 The last index of the second sequence. * @param m The length of the first sequence. * @param n The length of the second sequence. * @param sign This is used to mark wether to start from the beginning of the string * or from the end of the string. */ private void fillOne(int start1, int end1, int start2, int end2, int m, int n, int sign) { int j = 1; int i = this.S; boolean over = false; this.R2[0] = n+1; int lower2 = 0; int position2 = 0; int temp = 0; while (i > 0 & !over) { if (j > this.R) { lower2 = 0; } else { lower2 = this.R1[j]; } position2 = this.R2[j - 1] - 1; // The real index in the global char table is current_index * sign + beginning // index of the subchararray while (position2 > lower2 && !this.sequence1.getEvent((i - 1) * sign + start1) .equals(this.sequence2.getEvent((position2 - 1) * sign + start2))) { position2--; } temp = Math.max(position2, lower2); if (temp == 0) { over = true; } else { this.R2[j] = temp; i--; j++; } } this.R = j - 1; } /** * Uses integer arrays to keep track where the longest common subsequence that can be found. * *

The time complexity is O(n(waste+1)) and the space complexity is O(n+m). * * @param start1 The start index of the first sequence. * @param end1 The last index of the first sequence. * @param start2 The start index of the second sequence. * @param end2 The last index of the second sequence. * @param m The length of the first sequence. * @param n The length of the second sequence. * @param sign This is used to mark wether to start from the beginning of the string * or from the end of the string. * @param waste The length of characters not included in the LCS between indexes start1 and end1. * Similarly between indexes start2 and end2. * * @return Integer array consisting of the ???. */ private int[] calMid(int start1, int end1, int start2, int end2, int m, int n, int sign, int waste) { this.LL = new int[n+1]; this.R = 0; for (this.S = m; this.S >= m - waste; this.S--) { fillOne(start1, end1, start2, end2, m, n, sign); copyUpTo(this.R2, this.R1, this.R); } copyUpTo(this.R1, this.LL, this.R); return this.LL; } /** * Computes the LCS and returns it in character array. * * The time complexity is O(n(m-p)) and the space complexity is O(n+m). * * @param start1 The start index of the first sequence. * @param end1 The last index of the first sequence. * @param start2 The start index of the first sequence. * @param end2 The last index of the first sequence. * @param m The length of the first sequence. * @param n The length of the second sequence. * @param lcs The length of LCS between indexes start1 and end1. * Similarly between indexes b_start and b-loppu. (???) * * @throws IOException If thrown by the formatter */ private void generateLCS(int start1, int end1, int start2, int end2, int m, int n, int lcs) throws IOException { // Solves the base case, waste is less than 2 characters if (m - lcs < 2) { getLCSMinimumWaste(start1, end1, start2, end2, m, n, lcs); // Waste is more than 1 character, process recursively } else { getLCSMoreWaste(start1, end1, start2, end2, m, n, lcs); } } /** * Computes the longest common subsequence for the specified boundaries when the waste * is (strictly) less than 2 events. * *

This method is iterative; NOT recursive. * * @param start1 The start 0-based index of the first sequence. * @param end1 The last 0-based index of the first sequence. * @param start2 The start 0-based index of the second sequence. * @param end2 The last 0-based index of the second sequence. * @param m The length of the first sequence. * @param n The length of the second sequence. * @param lcs The length of LCS between indexes start1 and end1. * * @throws IOException If thrown by the formatter. */ private void getLCSMinimumWaste(int start1, int end1, int start2, int end2, int m, int n, int lcs) throws IOException { // number of diffs with the first subsequence int waste = m - lcs; // contains the relative 1-based index of the event in the second sequence in reverse order this.LL = calMid(start1, end1, start2, end2, m, n, 1, waste); if (DEBUG) { System.err.println("SEQ1={"+start1+" -> "+end1+"} SEQ2={"+start2+" -> "+end2+"}"); } if (DEBUG) { printState(0x10000); } int i = 0; // start in order for the first subsequence // and get the index of the second subsequence while (i < lcs && this.sequence1.getEvent(i + start1) .equals(this.sequence2.getEvent(this.LL[lcs - i] - 1 + start2))) { this.df.format(this.sequence1.getEvent(i + start1)); this.iSeq2++; // removed events from the second subsequence i++; if (i < lcs) { writeDeleted(this.LL[lcs - i] - 1 + start2); } } // possibly an event from the first subsequence to insert if (i < m) { this.df.insert(this.sequence1.getEvent(i + start1)); } // we should take care of the removed events from the second subsequence now (?) if (i < lcs) { writeDeleted(this.LL[lcs - i] - 1 + start2); } i++; // the second part of the first subsequence while (i < m) { this.df.format(this.sequence1.getEvent(i + start1)); this.iSeq2++; writeDeleted(this.LL[m - i] - 1 + start2); i++; } // finish writing the missing events from the second subsequence writeDeleted(this.LL[0] - 1 + start2); } /** * Computes the longest common subsequence for the specified boundaries when the waste * is more than 1 character. * *

This method is recursive and will process ech subsequence with the LCS algorithm. * * @param start1 The start 0-based index of the first sequence. * @param end1 The last 0-based index of the first sequence. * @param start2 The start 0-based index of the second sequence. * @param end2 The last 0-based index of the second sequence. * @param m The length of the first sequence. * @param n The length of the second sequence. * @param lcs The length of LCS between indexes start1 and end1. * * @throws IOException If thrown by the formatter. */ private void getLCSMoreWaste(int start1, int end1, int start2, int end2, int m, int n, int lcs) throws IOException { // The indexes of the perfect cut int u, v; int r1, r2; int waste1 = (int)Math.ceil((m - lcs) / 2.0f); this.LL1 = calMid(end1, start1, end2, start2, m, n, -1, waste1); // Saves the value changed in calmid from global variable R to variable r1 r1 = this.R; for (int j = 0; j <= r1; j++) { this.LL1[j] = n + 1 - this.LL1[j]; } int waste2 = (int)Math.floor((m - lcs) / 2.0f); this.LL2 = calMid(start1, end1, start2, end2, m, n, 1, waste2); // Saves the value changed in calmid from global variable R to variable r2 r2 = this.R; int k = Math.max(r1, r2); while (k > 0) { if (k <= r1 && lcs - k <= r2 && this.LL1[k] < this.LL2[lcs - k]) { break; } else { k--; } } u = k + waste1; v = this.LL1[k]; // recursively call the LCS method to process the two subsequences generateLCS(start1, start1 + u - 1, start2, start2 + v - 1, u - 1+1, v - 1+1, u - waste1); generateLCS(start1 + u, end1, start2 + v, end2, end1 - start1 + 1 - u, end2 - start2 + 1 - v, m - u - waste2); } /** * Write the deleted events to the formatter. * * @param jSeq2 The index of the LL array for the next event of the second sequence. * * @throws IOException If thrown by the formatter. */ private void writeDeleted(int jSeq2) throws IOException { // if (DEBUG) System.err.println("next="+jSeq2+" current="+iSeq2); while (jSeq2 > this.iSeq2) { this.df.delete(this.sequence2.getEvent(this.iSeq2++)); } } /** * Prints the state of this object, that is the values of all of the state variables to * System.err. This is for debugging purposes only. * * @param f The flags */ private void printState(int f) { if ((f & 0x0000001) == 0x0000001) { System.err.println(" R="+this.R); } if ((f & 0x0000010) == 0x0000010) { System.err.println(" S="+this.S); } if ((f & 0x0000011) > 0) { System.err.println(); } // The arrays for R1 and R2 if ((f & 0x0000100) == 0x0000100) { System.err.print(" R1={"); for (int element : this.R1) { System.err.print(" "+element); } System.err.println(" }"); } if ((f & 0x0001000) == 0x0001000) { System.err.print(" R2={"); for (int element : this.R2) { System.err.print(" "+element); } System.err.println(" }"); } if ((f & 0x0010000) == 0x0010000) { System.err.print(" LL={"); for (int element : this.LL) { System.err.print(" "+element); } System.err.println(" }"); } if ((f & 0x0100000) == 0x0100000) { System.err.print(" LL1={"); for (int element : this.LL1) { System.err.print(" "+element); } System.err.println(" }"); } if ((f & 0x1000000) == 0x1000000) { System.err.print(" LL2={"); for (int element : this.LL2) { System.err.print(" "+element); } System.err.println(" }"); } } // static helpers ----------------------------------------------------------------------------- /** * Copies the first array into the second one up to the specified index (included). * * @param a The first array. * @param b The second array. * @param len The 0-based index of the last copied value. */ private static void copyUpTo(int[] a, int[] b, int len) { for (int i = 0; i <= len; i++) { b[i] = a[i]; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy