Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2005 JBoss Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.drools.reteoo;
import org.drools.base.DroolsQuery;
import org.drools.common.BetaConstraints;
import org.drools.common.InternalFactHandle;
import org.drools.common.InternalWorkingMemory;
import org.drools.core.util.FastIterator;
import org.drools.core.util.Iterator;
import org.drools.core.util.RightTupleList;
import org.drools.reteoo.builder.BuildContext;
import org.drools.rule.Behavior;
import org.drools.rule.ContextEntry;
import org.drools.spi.PropagationContext;
public class NotNode extends BetaNode {
private static final long serialVersionUID = 510l;
static int notAssertObject = 0;
static int notAssertTuple = 0;
public NotNode() {
}
public NotNode(final int id,
final LeftTupleSource leftInput,
final ObjectSource rightInput,
final BetaConstraints joinNodeBinder,
final Behavior[] behaviors,
final BuildContext context) {
super( id,
context.getPartitionId(),
context.getRuleBase().getConfiguration().isMultithreadEvaluation(),
leftInput,
rightInput,
joinNodeBinder,
behaviors );
this.tupleMemoryEnabled = context.isTupleMemoryEnabled();
}
public void assertLeftTuple(final LeftTuple leftTuple,
final PropagationContext context,
final InternalWorkingMemory workingMemory) {
final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
RightTupleMemory rightMemory = memory.getRightTupleMemory();
ContextEntry[] contextEntry = memory.getContext();
boolean useLeftMemory = true;
if ( !this.tupleMemoryEnabled ) {
// This is a hack, to not add closed DroolsQuery objects
Object object = ((InternalFactHandle) leftTuple.get( 0 )).getObject();
if ( !(object instanceof DroolsQuery) || !((DroolsQuery) object).isOpen() ) {
useLeftMemory = false;
}
}
this.constraints.updateFromTuple( contextEntry,
workingMemory,
leftTuple );
FastIterator it = getRightIterator( rightMemory );
for ( RightTuple rightTuple = getFirstRightTuple(leftTuple, rightMemory, context, it); rightTuple != null; rightTuple = (RightTuple) it.next(rightTuple)) {
if ( this.constraints.isAllowedCachedLeft( contextEntry,
rightTuple.getFactHandle() ) ) {
leftTuple.setBlocker( rightTuple );
if ( useLeftMemory ) {
rightTuple.addBlocked( leftTuple );
}
break;
}
}
this.constraints.resetTuple( contextEntry );
if ( leftTuple.getBlocker() == null ) {
// tuple is not blocked, so add to memory so other fact handles can attempt to match
if ( useLeftMemory ) {
memory.getLeftTupleMemory().add( leftTuple );
}
this.sink.propagateAssertLeftTuple( leftTuple,
context,
workingMemory,
useLeftMemory );
}
}
public void assertObject(final InternalFactHandle factHandle,
final PropagationContext context,
final InternalWorkingMemory workingMemory) {
final RightTuple rightTuple = createRightTuple( factHandle,
this );
final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
if ( !behavior.assertRightTuple( memory.getBehaviorContext(),
rightTuple,
workingMemory ) ) {
// destroy right tuple
rightTuple.unlinkFromRightParent();
return;
}
memory.getRightTupleMemory().add( rightTuple );
if ( memory.getLeftTupleMemory() == null || memory.getLeftTupleMemory().size() == 0 ) {
// do nothing here, as no left memory
return;
}
this.constraints.updateFromFactHandle( memory.getContext(),
workingMemory,
factHandle );
LeftTupleMemory leftMemory = memory.getLeftTupleMemory();
FastIterator it = getLeftIterator( leftMemory );
for (LeftTuple leftTuple = getFirstLeftTuple( rightTuple, leftMemory, context, it ); leftTuple != null; ) {
// preserve next now, in case we remove this leftTuple
LeftTuple temp = (LeftTuple) it.next(leftTuple);
// we know that only unblocked LeftTuples are still in the memory
if ( this.constraints.isAllowedCachedRight( memory.getContext(),
leftTuple ) ) {
leftTuple.setBlocker( rightTuple );
rightTuple.addBlocked( leftTuple );
// this is now blocked so remove from memory
memory.getLeftTupleMemory().remove( leftTuple );
// subclasses like ForallNotNode might override this propagation
propagateRetractLeftTuple( context,
workingMemory,
leftTuple );
}
leftTuple = temp;
}
this.constraints.resetFactHandle( memory.getContext() );
}
public void retractRightTuple(final RightTuple rightTuple,
final PropagationContext context,
final InternalWorkingMemory workingMemory) {
final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
FastIterator it = memory.getRightTupleMemory().fastIterator();
// assign now, so we can remove from memory before doing any possible propagations
final RightTuple rootBlocker = (RightTuple) it.next(rightTuple);
behavior.retractRightTuple( memory.getBehaviorContext(),
rightTuple,
workingMemory );
memory.getRightTupleMemory().remove( rightTuple );
if ( rightTuple.getBlocked() == null ) {
return;
}
for ( LeftTuple leftTuple = (LeftTuple) rightTuple.getBlocked(); leftTuple != null; ) {
LeftTuple temp = leftTuple.getBlockedNext();
leftTuple.setBlocker( null );
leftTuple.setBlockedPrevious( null );
leftTuple.setBlockedNext( null );
this.constraints.updateFromTuple( memory.getContext(),
workingMemory,
leftTuple );
// we know that older tuples have been checked so continue next
for ( RightTuple newBlocker = rootBlocker; newBlocker != null; newBlocker = (RightTuple) it.next(newBlocker) ) {
if ( this.constraints.isAllowedCachedLeft( memory.getContext(),
newBlocker.getFactHandle() ) ) {
leftTuple.setBlocker( newBlocker );
newBlocker.addBlocked( leftTuple );
break;
}
}
if ( leftTuple.getBlocker() == null ) {
// was previous blocked and not in memory, so add
memory.getLeftTupleMemory().add( leftTuple );
// subclasses like ForallNotNode might override this propagation
propagateAssertLeftTuple( context,
workingMemory,
leftTuple );
}
leftTuple = temp;
}
rightTuple.nullBlocked();
this.constraints.resetTuple( memory.getContext() );
}
public void retractLeftTuple(final LeftTuple leftTuple,
final PropagationContext context,
final InternalWorkingMemory workingMemory) {
RightTuple blocker = leftTuple.getBlocker();
if ( blocker == null ) {
final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
memory.getLeftTupleMemory().remove( leftTuple );
this.sink.propagateRetractLeftTuple( leftTuple,
context,
workingMemory );
} else {
blocker.removeBlocked( leftTuple );
}
}
public void modifyLeftTuple(LeftTuple leftTuple,
PropagationContext context,
InternalWorkingMemory workingMemory) {
final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
RightTupleMemory rightMemory = memory.getRightTupleMemory();
FastIterator rightIt = getRightIterator( rightMemory );
RightTuple firstRightTuple = getFirstRightTuple(leftTuple, rightMemory, context, rightIt);
// If in memory, remove it, because we'll need to add it anyway if it's not blocked, to ensure iteration order
RightTuple blocker = leftTuple.getBlocker();
if ( blocker == null ) {
memory.getLeftTupleMemory().remove( leftTuple );
} else {
// check if we changed bucket
if ( rightMemory.isIndexed() && !rightIt.isFullIterator() ) {
// if newRightTuple is null, we assume there was a bucket change and that bucket is empty
if ( firstRightTuple == null || firstRightTuple.getMemory() != blocker.getMemory() ) {
// we changed bucket, so blocker no longer blocks
blocker.removeBlocked( leftTuple );
leftTuple.setBlocker( null );
leftTuple.setBlockedPrevious( null );
leftTuple.setBlockedNext( null );
blocker = null;
}
}
}
this.constraints.updateFromTuple( memory.getContext(),
workingMemory,
leftTuple );
// if we where not blocked before (or changed buckets), or the previous blocker no longer blocks, then find the next blocker
if ( blocker == null || !this.constraints.isAllowedCachedLeft( memory.getContext(),
blocker.getFactHandle() ) ) {
if ( blocker != null ) {
// remove previous blocker if it exists, as we know it doesn't block any more
blocker.removeBlocked( leftTuple );
leftTuple.setBlocker( null );
leftTuple.setBlockedPrevious( null );
leftTuple.setBlockedNext( null );
}
// find first blocker, because it's a modify, we need to start from the beginning again
for ( RightTuple newBlocker = firstRightTuple; newBlocker != null; newBlocker = (RightTuple) rightIt.next(newBlocker) ) {
if ( this.constraints.isAllowedCachedLeft( memory.getContext(),
newBlocker.getFactHandle() ) ) {
leftTuple.setBlocker( newBlocker );
newBlocker.addBlocked( leftTuple );
break;
}
}
if ( leftTuple.getBlocker() != null ) {
// blocked
if ( leftTuple.getFirstChild() != null ) {
// blocked, with previous children, so must have not been previously blocked, so retract
// no need to remove, as we removed at the start
// to be matched against, as it's now blocked
propagateRetractLeftTuple( context,
workingMemory,
leftTuple );
} // else: it's blocked now and no children so blocked before, thus do nothing
} else if ( leftTuple.getFirstChild() == null ) {
// not blocked, with no children, must have been previously blocked so assert
memory.getLeftTupleMemory().add( leftTuple ); // add to memory so other fact handles can attempt to match
propagateAssertLeftTuple( context,
workingMemory,
leftTuple );
} else {
// not blocked, with children, so wasn't previous blocked and still isn't so modify
memory.getLeftTupleMemory().add( leftTuple ); // add to memory so other fact handles can attempt to match
propagateModifyChildLeftTuple( context,
workingMemory,
leftTuple );
}
}
this.constraints.resetTuple( memory.getContext() );
}
public void modifyRightTuple(RightTuple rightTuple,
PropagationContext context,
InternalWorkingMemory workingMemory) {
final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
if ( memory.getLeftTupleMemory() == null || ( memory.getLeftTupleMemory().size() == 0 && rightTuple.getBlocked() == null ) ) {
// do nothing here, as we know there are no left tuples
//normally do this at the end, but as we are exiting early, make sure the buckets are still correct.
memory.getRightTupleMemory().removeAdd( rightTuple );
return;
}
// TODO: wtd with behaviours?
// if ( !behavior.assertRightTuple( memory.getBehaviorContext(),
// rightTuple,
// workingMemory ) ) {
// // destroy right tuple
// rightTuple.unlinkFromRightParent();
// return;
// }
this.constraints.updateFromFactHandle( memory.getContext(),
workingMemory,
rightTuple.getFactHandle() );
LeftTupleMemory leftMemory = memory.getLeftTupleMemory();
FastIterator leftIt = getLeftIterator( leftMemory );
LeftTuple firstLeftTuple = getFirstLeftTuple( rightTuple, leftMemory, context, leftIt );
LeftTuple firstBlocked = rightTuple.getBlocked();
// we now have reference to the first Blocked, so null it in the rightTuple itself, so we can rebuild
rightTuple.nullBlocked();
// first process non-blocked tuples, as we know only those ones are in the left memory.
for ( LeftTuple leftTuple = firstLeftTuple; leftTuple != null; ) {
// preserve next now, in case we remove this leftTuple
LeftTuple temp = (LeftTuple) leftIt.next(leftTuple);
// we know that only unblocked LeftTuples are still in the memory
if ( this.constraints.isAllowedCachedRight( memory.getContext(),
leftTuple ) ) {
leftTuple.setBlocker( rightTuple );
rightTuple.addBlocked( leftTuple );
// this is now blocked so remove from memory
leftMemory.remove( leftTuple );
// subclasses like ForallNotNode might override this propagation
propagateRetractLeftTuple( context,
workingMemory,
leftTuple );
}
leftTuple = temp;
}
if ( firstBlocked != null ) {
// now process existing blocks, we only process existing and not new from above loop
FastIterator rightIt = getRightIterator( memory.getRightTupleMemory() );
RightTuple rootBlocker = (RightTuple) rightIt.next(rightTuple);
RightTupleList list = rightTuple.getMemory();
// we must do this after we have the next in memory
// We add to the end to give an opportunity to re-match if in same bucket
memory.getRightTupleMemory().removeAdd( rightTuple );
if ( rootBlocker == null && list == rightTuple.getMemory() ) {
// we are at the end of the list, so set to self, to give self a chance to rematch
rootBlocker = rightTuple;
}
// iterate all the existing previous blocked LeftTuples
for ( LeftTuple leftTuple = (LeftTuple) firstBlocked; leftTuple != null; ) {
LeftTuple temp = leftTuple.getBlockedNext();
leftTuple.setBlocker( null );
leftTuple.setBlockedPrevious( null );
leftTuple.setBlockedNext( null );
this.constraints.updateFromTuple( memory.getContext(),
workingMemory,
leftTuple );
// we know that older tuples have been checked so continue next
for ( RightTuple newBlocker = rootBlocker; newBlocker != null; newBlocker = (RightTuple) rightIt.next( newBlocker ) ) {
if ( this.constraints.isAllowedCachedLeft( memory.getContext(),
newBlocker.getFactHandle() ) ) {
leftTuple.setBlocker( newBlocker );
newBlocker.addBlocked( leftTuple );
break;
}
}
if ( leftTuple.getBlocker() == null ) {
// was previous blocked and not in memory, so add
memory.getLeftTupleMemory().add( leftTuple );
// subclasses like ForallNotNode might override this propagation
propagateAssertLeftTuple( context,
workingMemory,
leftTuple );
}
leftTuple = temp;
}
} else {
// we had to do this at the end, rather than beginning as this 'if' block needs the next memory tuple
memory.getRightTupleMemory().removeAdd( rightTuple );
}
this.constraints.resetFactHandle( memory.getContext() );
this.constraints.resetTuple( memory.getContext() );
}
protected void propagateAssertLeftTuple(final PropagationContext context,
final InternalWorkingMemory workingMemory,
LeftTuple leftTuple) {
this.sink.propagateAssertLeftTuple( leftTuple,
context,
workingMemory,
true );
}
protected void propagateRetractLeftTuple(final PropagationContext context,
final InternalWorkingMemory workingMemory,
LeftTuple leftTuple) {
this.sink.propagateRetractLeftTuple( leftTuple,
context,
workingMemory );
}
protected void propagateModifyChildLeftTuple(final PropagationContext context,
final InternalWorkingMemory workingMemory,
LeftTuple leftTuple) {
this.sink.propagateModifyChildLeftTuple( leftTuple,
context,
workingMemory,
true );
}
public void updateSink(final LeftTupleSink sink,
final PropagationContext context,
final InternalWorkingMemory workingMemory) {
final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
final Iterator tupleIter = memory.getLeftTupleMemory().iterator();
for ( LeftTuple leftTuple = (LeftTuple) tupleIter.next(); leftTuple != null; leftTuple = (LeftTuple) tupleIter.next() ) {
sink.assertLeftTuple( sink.createLeftTuple( leftTuple,
sink,
true ),
context,
workingMemory );
}
}
public short getType() {
return NodeTypeEnums.NotNode;
}
public LeftTuple createLeftTuple(InternalFactHandle factHandle,
LeftTupleSink sink,
boolean leftTupleMemoryEnabled) {
return new NotNodeLeftTuple(factHandle, sink, leftTupleMemoryEnabled );
}
public LeftTuple createLeftTuple(LeftTuple leftTuple,
LeftTupleSink sink,
boolean leftTupleMemoryEnabled) {
return new NotNodeLeftTuple(leftTuple,sink, leftTupleMemoryEnabled );
}
public LeftTuple createLeftTuple(LeftTuple leftTuple,
RightTuple rightTuple,
LeftTupleSink sink) {
return new NotNodeLeftTuple(leftTuple, rightTuple, sink );
}
public LeftTuple createLeftTuple(LeftTuple leftTuple,
RightTuple rightTuple,
LeftTuple currentLeftChild,
LeftTuple currentRightChild,
LeftTupleSink sink,
boolean leftTupleMemoryEnabled) {
return new NotNodeLeftTuple(leftTuple, rightTuple, currentLeftChild, currentRightChild, sink, leftTupleMemoryEnabled );
}
public String toString() {
ObjectSource source = this.rightInput;
while ( source != null && !(source instanceof ObjectTypeNode) ) {
source = source.source;
}
return "[NotNode(" + this.getId() + ") - " + ((source != null) ? ((ObjectTypeNode) source).getObjectType() : "