All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.drools.reteoo.nodes.ReteExistsNode Maven / Gradle / Ivy

There is a newer version: 7.0.0.Beta4
Show newest version
package org.drools.reteoo.nodes;

import org.drools.core.base.DroolsQuery;
import org.drools.core.common.BetaConstraints;
import org.drools.core.common.InternalFactHandle;
import org.drools.core.common.InternalWorkingMemory;
import org.drools.core.reteoo.BetaMemory;
import org.drools.core.reteoo.ExistsNode;
import org.drools.core.reteoo.LeftTuple;
import org.drools.core.reteoo.LeftTupleMemory;
import org.drools.core.reteoo.LeftTupleSink;
import org.drools.core.reteoo.LeftTupleSource;
import org.drools.core.reteoo.LeftTupleSourceUtils;
import org.drools.core.reteoo.ModifyPreviousTuples;
import org.drools.core.reteoo.NodeSet;
import org.drools.core.reteoo.ObjectSource;
import org.drools.core.reteoo.ReteooBuilder;
import org.drools.core.reteoo.RightTuple;
import org.drools.core.reteoo.RightTupleMemory;
import org.drools.core.reteoo.RuleRemovalContext;
import org.drools.core.reteoo.builder.BuildContext;
import org.drools.core.rule.ContextEntry;
import org.drools.core.spi.PropagationContext;
import org.drools.core.util.FastIterator;
import org.drools.core.util.Iterator;
import org.drools.core.util.index.RightTupleList;

public class ReteExistsNode extends ExistsNode {

    public ReteExistsNode() {
    }

    public ReteExistsNode(final int id,
                      final LeftTupleSource leftInput,
                      final ObjectSource rightInput,
                      final BetaConstraints joinNodeBinder,
                      final BuildContext context) {
        super( id,
               leftInput,
               rightInput,
               joinNodeBinder,
               context );
    }

    public void assertObject( final InternalFactHandle factHandle,
                              final PropagationContext pctx,
                              final InternalWorkingMemory wm ) {
        ReteBetaNodeUtils.assertObject(this, factHandle, pctx, wm);
    }

    public void attach(BuildContext context) {
        ReteBetaNodeUtils.attach(this, context);
    }

    public void doRemove(RuleRemovalContext context, ReteooBuilder builder, InternalWorkingMemory[] workingMemories) {
        ReteBetaNodeUtils.doRemove(this, context, builder, workingMemories);
    }

    public void modifyObject(InternalFactHandle factHandle, ModifyPreviousTuples modifyPreviousTuples, PropagationContext context, InternalWorkingMemory workingMemory) {
        ReteBetaNodeUtils.modifyObject(this, factHandle, modifyPreviousTuples, context, workingMemory);
    }

    public void modifyLeftTuple(InternalFactHandle factHandle,
                                ModifyPreviousTuples modifyPreviousTuples,
                                PropagationContext context,
                                InternalWorkingMemory workingMemory) {
        LeftTupleSourceUtils.doModifyLeftTuple(factHandle, modifyPreviousTuples, context, workingMemory,
                                               (LeftTupleSink) this, getLeftInputOtnId(), getLeftInferredMask());
    }

    public void assertLeftTuple(final LeftTuple leftTuple,
                                final PropagationContext context,
                                final InternalWorkingMemory workingMemory) {
        final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );

        RightTupleMemory rightMemory = memory.getRightTupleMemory();

        ContextEntry[] contextEntry = memory.getContext();


        boolean useLeftMemory = true;
        if ( !this.tupleMemoryEnabled ) {
            // This is a hack, to not add closed DroolsQuery objects
            Object object = ((InternalFactHandle) context.getFactHandle()).getObject();
            if ( !(object instanceof DroolsQuery) || !((DroolsQuery) object).isOpen() ) {
                useLeftMemory = false;
            }
        }

        this.constraints.updateFromTuple( contextEntry,
                                          workingMemory,
                                          leftTuple );

        FastIterator it = getRightIterator( rightMemory );

        for ( RightTuple rightTuple = getFirstRightTuple(leftTuple, rightMemory, (InternalFactHandle) context.getFactHandle(), it); rightTuple != null; rightTuple = (RightTuple) it.next(rightTuple)) {
            if ( this.constraints.isAllowedCachedLeft( contextEntry,
                                                       rightTuple.getFactHandle() ) ) {

                leftTuple.setBlocker( rightTuple );
                if ( useLeftMemory ) {
                    rightTuple.addBlocked( leftTuple );
                }

                break;
            }
        }

        this.constraints.resetTuple( contextEntry );

        if ( leftTuple.getBlocker() != null ) {
            // tuple is not blocked to propagate
            this.sink.propagateAssertLeftTuple( leftTuple,
                                                context,
                                                workingMemory,
                                                useLeftMemory );
        } else if ( useLeftMemory ) {
            // LeftTuple is not blocked, so add to memory so other RightTuples can match
            memory.getLeftTupleMemory().add( leftTuple );
        }
    }

    public void assertRightTuple( final RightTuple rightTuple,
                                  final PropagationContext context,
                                  final InternalWorkingMemory workingMemory ) {
        final BetaMemory memory = (BetaMemory)  workingMemory.getNodeMemory( this );

        memory.getRightTupleMemory().add( rightTuple );

        if ( memory.getLeftTupleMemory() == null || memory.getLeftTupleMemory().size() == 0 ) {
            // do nothing here, as no left memory
            return;
        }

        this.constraints.updateFromFactHandle( memory.getContext(),
                                               workingMemory,
                                               rightTuple.getFactHandle() );

        LeftTupleMemory leftMemory = memory.getLeftTupleMemory();
        FastIterator it = getLeftIterator( leftMemory );
        for (LeftTuple leftTuple = getFirstLeftTuple( rightTuple, leftMemory, context, it );  leftTuple != null; ) {
            // preserve next now, in case we remove this leftTuple
            LeftTuple temp = (LeftTuple) it.next(leftTuple);

            // we know that only unblocked LeftTuples are  still in the memory
            if ( this.constraints.isAllowedCachedRight( memory.getContext(),
                                                        leftTuple ) ) {
                leftTuple.setBlocker( rightTuple );
                rightTuple.addBlocked( leftTuple );

                memory.getLeftTupleMemory().remove( leftTuple );

                this.sink.propagateAssertLeftTuple( leftTuple,
                                                    context,
                                                    workingMemory,
                                                    true );
            }

            leftTuple = temp;
        }

        this.constraints.resetFactHandle( memory.getContext() );
    }

    public void retractRightTuple(final RightTuple rightTuple,
                                  final PropagationContext pctx,
                                  final InternalWorkingMemory workingMemory) {
        final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
        RightTupleMemory rtm = memory.getRightTupleMemory();
        if ( rightTuple.getBlocked() != null ) {
            updateLeftTupleToNewBlocker(rightTuple, pctx, workingMemory, memory, memory.getLeftTupleMemory(), rightTuple.getBlocked(), rtm, false);
            rightTuple.nullBlocked();
        } else {
            // it's also removed in the updateLeftTupleToNewBlocker
            rtm.remove(rightTuple);
        }

        this.constraints.resetTuple( memory.getContext() );
    }

    /**
     * Retract the
     * ReteTuple, any resulting propagated joins are also retracted.
     *
     * @param leftTuple
     *            The tuple being retracted
     * @param context
     *            The PropagationContext
     * @param workingMemory
     *            The working memory session.
     */
    public void retractLeftTuple(final LeftTuple leftTuple,
                                 final PropagationContext context,
                                 final InternalWorkingMemory workingMemory) {
        RightTuple blocker = leftTuple.getBlocker();
        if ( blocker == null ) {
            final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
            memory.getLeftTupleMemory().remove( leftTuple );
        } else {
            this.sink.propagateRetractLeftTuple( leftTuple,
                                                 context,
                                                 workingMemory );

            blocker.removeBlocked( leftTuple );
        }
    }

    public void modifyLeftTuple(LeftTuple leftTuple,
                                PropagationContext context,
                                InternalWorkingMemory workingMemory) {
        final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
        RightTupleMemory rightMemory = memory.getRightTupleMemory();

        FastIterator rightIt = getRightIterator( rightMemory );
        RightTuple firstRightTuple = getFirstRightTuple(leftTuple, rightMemory, (InternalFactHandle) context.getFactHandle(), rightIt);

        // If in memory, remove it, because we'll need to add it anyway if it's not blocked, to ensure iteration order
        RightTuple blocker = leftTuple.getBlocker();
        if ( blocker == null ) {
            memory.getLeftTupleMemory().remove( leftTuple );
        } else {
            // check if we changed bucket
            if ( rightMemory.isIndexed()&& !rightIt.isFullIterator()  ) {
                // if newRightTuple is null, we assume there was a bucket change and that bucket is empty
                if ( firstRightTuple == null || firstRightTuple.getMemory() != blocker.getMemory() ) {
                    // we changed bucket, so blocker no longer blocks
                    blocker.removeBlocked( leftTuple );
                    blocker = null;
                }
            }
        }

        this.constraints.updateFromTuple( memory.getContext(),
                                          workingMemory,
                                          leftTuple );

        if ( blocker != null && !isLeftUpdateOptimizationAllowed() ) {
            blocker.removeBlocked(leftTuple);
            blocker = null;
        }

        // if we where not blocked before (or changed buckets), or the previous blocker no longer blocks, then find the next blocker
        if ( blocker == null || !this.constraints.isAllowedCachedLeft( memory.getContext(),
                                                                       blocker.getFactHandle() ) ) {

            if ( blocker != null ) {
                // remove previous blocker if it exists, as we know it doesn't block any more
                blocker.removeBlocked( leftTuple );
            }

            FastIterator it = memory.getRightTupleMemory().fastIterator();

            // find first blocker, because it's a modify, we need to start from the beginning again
            for ( RightTuple newBlocker = firstRightTuple; newBlocker != null; newBlocker = (RightTuple) rightIt.next(newBlocker) ) {
                if ( this.constraints.isAllowedCachedLeft( memory.getContext(),
                                                           newBlocker.getFactHandle() ) ) {
                    leftTuple.setBlocker( newBlocker );
                    newBlocker.addBlocked( leftTuple );

                    break;
                }
            }
        }

        if ( leftTuple.getBlocker() == null ) {
            // not blocked
            memory.getLeftTupleMemory().add( leftTuple ); // add to memory so other fact handles can attempt to match

            if ( leftTuple.getFirstChild() != null ) {
                // with previous children, retract
                this.sink.propagateRetractLeftTuple( leftTuple,
                                                     context,
                                                     workingMemory );
            }
            // with no previous children. do nothing.
        } else if ( leftTuple.getFirstChild() == null ) {
            // blocked, with no previous children, assert
            this.sink.propagateAssertLeftTuple( leftTuple,
                                                context,
                                                workingMemory,
                                                true );
        } else {
            // blocked, with previous children, modify
            this.sink.propagateModifyChildLeftTuple( leftTuple,
                                                     context,
                                                     workingMemory,
                                                     true );
        }

        this.constraints.resetTuple( memory.getContext() );
    }

    public void modifyRightTuple(RightTuple rightTuple,
                                 PropagationContext context,
                                 InternalWorkingMemory workingMemory) {
        final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );

        if ( memory.getLeftTupleMemory() == null || (memory.getLeftTupleMemory().size() == 0 && rightTuple.getBlocked() == null) ) {
            // do nothing here, as we know there are no left tuples

            //normally do this at the end, but as we are exiting early, make sure the buckets are still correct.
            memory.getRightTupleMemory().removeAdd( rightTuple );
            return;
        }

        // TODO: wtd with behaviours?
        //        if ( !behavior.assertRightTuple( memory.getBehaviorContext(),
        //                                         rightTuple,
        //                                         workingMemory ) ) {
        //            // destroy right tuple
        //            rightTuple.unlinkFromRightParent();
        //            return;
        //        }
        this.constraints.updateFromFactHandle( memory.getContext(),
                                               workingMemory,
                                               rightTuple.getFactHandle() );

        LeftTupleMemory leftMemory = memory.getLeftTupleMemory();
        FastIterator leftIt = getLeftIterator( leftMemory );
        LeftTuple firstLeftTuple = getFirstLeftTuple( rightTuple, leftMemory, context, leftIt );

        LeftTuple firstBlocked = rightTuple.getBlocked();
        // we now have  reference to the first Blocked, so null it in the rightTuple itself, so we can rebuild
        rightTuple.nullBlocked();

        // first process non-blocked tuples, as we know only those ones are in the left memory.
        for ( LeftTuple leftTuple = firstLeftTuple; leftTuple != null; ) {
            // preserve next now, in case we remove this leftTuple
            LeftTuple temp = (LeftTuple) leftIt.next( leftTuple );

            // we know that only unblocked LeftTuples are  still in the memory
            if ( this.constraints.isAllowedCachedRight( memory.getContext(),
                                                        leftTuple ) ) {
                leftTuple.setBlocker( rightTuple );
                rightTuple.addBlocked( leftTuple );

                // this is now blocked so remove from memory
                leftMemory.remove( leftTuple );

                // subclasses like ForallNotNode might override this propagation
                this.sink.propagateAssertLeftTuple( leftTuple,
                                                    context,
                                                    workingMemory,
                                                    true );
            }

            leftTuple = temp;
        }

        RightTupleMemory rightTupleMemory = memory.getRightTupleMemory();
        if ( firstBlocked != null ) {
            updateLeftTupleToNewBlocker(rightTuple, context, workingMemory, memory, leftMemory, firstBlocked, rightTupleMemory, true);


        } else {
            // we had to do this at the end, rather than beginning as this 'if' block needs the next memory tuple
            rightTupleMemory.removeAdd( rightTuple );
        }

        this.constraints.resetFactHandle( memory.getContext() );
        this.constraints.resetTuple( memory.getContext() );

    }

    private void updateLeftTupleToNewBlocker(RightTuple rightTuple, PropagationContext context, InternalWorkingMemory workingMemory, BetaMemory memory, LeftTupleMemory leftMemory, LeftTuple firstBlocked, RightTupleMemory rightTupleMemory, boolean removeAdd) {// will attempt to resume from the last blocker, if it's not a comparison or unification index.
        boolean resumeFromCurrent =  !(indexedUnificationJoin || rightTupleMemory.getIndexType().isComparison());

        FastIterator rightIt = null;
        RightTuple rootBlocker = null;
        if ( resumeFromCurrent ) {
            RightTupleList currentRtm = rightTuple.getMemory();
            rightIt = currentRtm.fastIterator(); // only needs to iterate the current bucket, works for equality indexed and non indexed.
            rootBlocker = (RightTuple) rightTuple.getNext();

            if ( removeAdd ) {
                // we must do this after we have the next in memory
                // We add to the end to give an opportunity to re-match if in same bucket
                rightTupleMemory.removeAdd( rightTuple );
            } else {
                rightTupleMemory.remove( rightTuple );
            }

            if ( rootBlocker == null && rightTuple.getMemory() == currentRtm) {
                // there was no next root blocker, but the current was re-added to same list, so set for re-match attempt.
                rootBlocker = rightTuple;
            }
        } else {
            rightIt = getRightIterator( rightTupleMemory );
            if ( removeAdd ) {
                rightTupleMemory.removeAdd( rightTuple );
            }  else {
                rightTupleMemory.remove( rightTuple );
            }
        }

        // iterate all the existing previous blocked LeftTuples
        for ( LeftTuple leftTuple = (LeftTuple) firstBlocked; leftTuple != null; ) {
            LeftTuple temp = leftTuple.getBlockedNext();

            leftTuple.clearBlocker();

            this.constraints.updateFromTuple( memory.getContext(),
                                              workingMemory,
                                              leftTuple );

            if (!resumeFromCurrent) {
                rootBlocker = getFirstRightTuple( leftTuple, rightTupleMemory, (InternalFactHandle) context.getFactHandle(), rightIt );
            }

            // we know that older tuples have been checked so continue next
            for ( RightTuple newBlocker = rootBlocker; newBlocker != null; newBlocker = (RightTuple) rightIt.next( newBlocker ) ) {
                if ( this.constraints.isAllowedCachedLeft( memory.getContext(),
                                                           newBlocker.getFactHandle() ) ) {
                    leftTuple.setBlocker( newBlocker );
                    newBlocker.addBlocked( leftTuple );

                    break;
                }
            }

            if ( leftTuple.getBlocker() == null ) {
                // was previous blocked and not in memory, so add
                leftMemory.add( leftTuple );

                // subclasses like ForallNotNode might override this propagation
                this.sink.propagateRetractLeftTuple( leftTuple,
                                                     context,
                                                     workingMemory );
            }

            leftTuple = temp;
        }
    }


    /**
     * Updates the given sink propagating all previously propagated tuples to it
     */
    public void updateSink(final LeftTupleSink sink,
                           final PropagationContext context,
                           final InternalWorkingMemory workingMemory) {
        final BetaMemory memory = (BetaMemory) workingMemory.getNodeMemory( this );
        Iterator it = memory.getRightTupleMemory().iterator();

        // Relies on the fact that any propagated LeftTuples are blocked, but due to lazy blocking
        // they will only be blocked once. So we can iterate the right memory to find the left tuples to propagate
        for ( RightTuple rightTuple = (RightTuple) it.next(); rightTuple != null; rightTuple = (RightTuple) it.next() ) {
            LeftTuple leftTuple = rightTuple.getBlocked();
            while ( leftTuple != null ) {
                sink.assertLeftTuple( sink.createLeftTuple( leftTuple,
                                                            sink,
                                                            context, true),
                                      context,
                                      workingMemory );
                leftTuple = leftTuple.getBlockedNext();
            }
        }
    }
}