All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.dyn4j.collision.narrowphase.MinkowskiSum Maven / Gradle / Ivy

There is a newer version: 5.0.2
Show newest version
/*
 * Copyright (c) 2010-2016 William Bittle  http://www.dyn4j.org/
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification, are permitted 
 * provided that the following conditions are met:
 * 
 *   * Redistributions of source code must retain the above copyright notice, this list of conditions 
 *     and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright notice, this list of conditions 
 *     and the following disclaimer in the documentation and/or other materials provided with the 
 *     distribution.
 *   * Neither the name of dyn4j nor the names of its contributors may be used to endorse or 
 *     promote products derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR 
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND 
 * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 
 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.dyn4j.collision.narrowphase;

import org.dyn4j.geometry.Convex;
import org.dyn4j.geometry.Shape;
import org.dyn4j.geometry.Transform;
import org.dyn4j.geometry.Vector2;

/**
 * Represents the Minkowski sum of the given {@link Convex} {@link Shape}s.
 * 

* This class is used by the {@link Gjk} and {@link Epa} classes to compute support points. *

* This class doesn't actually compute the Minkowski sum. * @author William Bittle * @version 3.2.0 * @since 1.0.0 */ public class MinkowskiSum { /** The first {@link Convex} */ final Convex convex1; /** The second {@link Convex} */ final Convex convex2; /** The first {@link Convex}'s {@link Transform} */ final Transform transform1; /** The second {@link Convex}'s {@link Transform} */ final Transform transform2; /** * Full constructor. * @param convex1 the first {@link Convex} * @param transform1 the first {@link Convex}'s {@link Transform} * @param convex2 the second {@link Convex} * @param transform2 the second {@link Convex}'s {@link Transform} */ public MinkowskiSum(Convex convex1, Transform transform1, Convex convex2, Transform transform2) { this.convex1 = convex1; this.convex2 = convex2; this.transform1 = transform1; this.transform2 = transform2; } /* (non-Javadoc) * @see java.lang.Object#toString() */ @Override public String toString() { StringBuilder sb = new StringBuilder(); sb.append("MinkowskiSum[Convex1=").append(this.convex1.getId()) .append("|Transform1=").append(this.transform1) .append("|Convex2=").append(this.convex2.getId()) .append("|Transform2=").append(this.transform2) .append("]"); return sb.toString(); } /** * Returns the farthest point in the Minkowski sum given the direction. * @param direction the search direction * @return {@link Vector2} the point farthest in the Minkowski sum in the given direction */ public final Vector2 getSupportPoint(Vector2 direction) { // get the farthest point in the given direction in convex1 Vector2 point1 = this.convex1.getFarthestPoint(direction, this.transform1); direction.negate(); // get the farthest point in the opposite direction in convex2 Vector2 point2 = this.convex2.getFarthestPoint(direction, this.transform2); direction.negate(); // return the Minkowski sum point return point1.subtract(point2); } /** * Returns the farthest point, and the support points in the shapes, in the Minkowski sum given the direction. * @param direction the search direction * @return {@link MinkowskiSumPoint} the point farthest in the Minkowski sum in the given direction */ public final MinkowskiSumPoint getSupportPoints(Vector2 direction) { // get the farthest point in the given direction in convex1 Vector2 point1 = this.convex1.getFarthestPoint(direction, this.transform1); direction.negate(); // get the farthest point in the opposite direction in convex2 Vector2 point2 = this.convex2.getFarthestPoint(direction, this.transform2); direction.negate(); // set the Minkowski sum point given the support points return new MinkowskiSumPoint(point1, point2); } /** * Returns the first {@link Convex} {@link Shape}. * @return {@link Convex} */ public Convex getConvex1() { return this.convex1; } /** * Returns the second {@link Convex} {@link Shape}. * @return {@link Convex} */ public Convex getConvex2() { return this.convex2; } /** * Returns the first {@link Convex} {@link Shape}'s {@link Transform}. * @return {@link Transform} */ public Transform getTransform1() { return this.transform1; } /** * Returns the second {@link Convex} {@link Shape}'s {@link Transform}. * @return {@link Transform} */ public Transform getTransform2() { return this.transform2; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy