All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.mozilla.javascript.Sorting Maven / Gradle / Ivy

package org.mozilla.javascript;

import java.util.Comparator;

public final class Sorting {
    private static final int SMALLSORT = 16;

    public static void insertionSort(Object[] a, Comparator cmp)
    {
        insertionSort(a, 0, a.length - 1, cmp);
    }

    public static void insertionSort(Object[] a, int start, int end, Comparator cmp)
    {
        int i = start;
        while (i <= end) {
            Object x = a[i];
            int j = i - 1;
            while ((j >= start) && (cmp.compare(a[j], x) > 0)) {
                a[j + 1] = a[j];
                j--;
            }
            a[j + 1] = x;
            i++;
        }
    }

    /*
    Hybrid sorting mechanism similar to Introsort by David Musser. Uses quicksort's
    partitioning mechanism recursively until the resulting array is small or the
    recursion is too deep, and then use insertion sort for the rest.
    This is the same basic algorithm used by the GNU Standard C++ library.
    */
    public static void hybridSort(Object[] a, Comparator cmp)
    {
        hybridSort(a, 0, a.length - 1, cmp, log2(a.length) * 2);
    }

    private static void hybridSort(Object[] a, int start, int end, Comparator cmp, int maxdepth)
    {
        if (start < end) {
            if ((maxdepth == 0) || ((end - start) <= SMALLSORT)) {
                insertionSort(a, start, end, cmp);
            } else {
                int p = partition(a, start, end, cmp);
                hybridSort(a, start, p, cmp, maxdepth - 1);
                hybridSort(a, p + 1, end, cmp, maxdepth - 1);
            }
        }
    }

    /*
    Quicksort-style partitioning, using the Hoare partition scheme as coded by
    Sedgewick at https://algs4.cs.princeton.edu/23quicksort/Quick.java.html.
    Use the "median of three" method to determine which index to pivot on, and then
    separate the array into two halves based on the pivot.
    */
    private static int partition(Object[] a, int start, int end, Comparator cmp) {
        final int p = median(a, start, end, cmp);
        final Object pivot = a[p];
        a[p] = a[start];
        a[start] = pivot;

        int i = start;
        int j = end + 1;

        while (true) {
            while (cmp.compare(a[++i], pivot) < 0) {
                if (i == end) {
                    break;
                }
            }
            while (cmp.compare(a[--j], pivot) >= 0) {
                if (j == start) {
                    break;
                }
            }
            if (i >= j) {
                break;
            }
            swap(a, i, j);
        }

        swap(a, start, j);
        return j;
    }

    private static void swap(Object[] a, int l, int h)
    {
        final Object tmp = a[l];
        a[l] = a[h];
        a[h] = tmp;
    }

    private static int log2(int n)
    {
        return (int)(Math.log10(n) / Math.log10(2.0));
    }

    /*
    Return the index of the median of three elements in the specified array range -- the
    first, the last, and the one in the middle.
    */
    public static int median(final Object[] a, int start, int end, Comparator cmp)
    {
        final int m = start + ((end - start) / 2);
        int smallest = start;

        if (cmp.compare(a[smallest], a[m]) > 0) {
            smallest = m;
        }
        if (cmp.compare(a[smallest], a[end]) > 0) {
            smallest = end;
        }

        if (smallest == start) {
            return (cmp.compare(a[m], a[end]) < 0) ? m : end;
        }
        if (smallest == m) {
            return (cmp.compare(a[start], a[end]) < 0) ? start : end;
        }
        return (cmp.compare(a[start], a[m]) < 0) ? start : m;
    }
}