All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.jdt.internal.compiler.lookup.MethodVerifier Maven / Gradle / Ivy

There is a newer version: 3.39.0
Show newest version
/*******************************************************************************
 * Copyright (c) 2000, 2017 IBM Corporation and others.
 *
 * This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License 2.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-2.0/
 *
 * SPDX-License-Identifier: EPL-2.0
 *
 * Contributors:
 *     IBM Corporation - initial API and implementation
 *     Benjamin Muskalla - Contribution for bug 239066
 *     Stephan Herrmann - Contribution for
 *     							bug 382347 - [1.8][compiler] Compiler accepts incorrect default method inheritance
 *								bug 388954 - [1.8][compiler] detect default methods in class files
 *								bug 388281 - [compiler][null] inheritance of null annotations as an option
 *								bug 388739 - [1.8][compiler] consider default methods when detecting whether a class needs to be declared abstract
 *								bug 390883 - [1.8][compiler] Unable to override default method
 *								bug 401796 - [1.8][compiler] don't treat default methods as overriding an independent inherited abstract method
 *								bug 395681 - [compiler] Improve simulation of javac6 behavior from bug 317719 after fixing bug 388795
 *								bug 406928 - computation of inherited methods seems damaged (affecting @Overrides)
 *								bug 409473 - [compiler] JDT cannot compile against JRE 1.8
 *								Bug 420080 - [1.8] Overridden Default method is reported as duplicated
 *******************************************************************************/
package org.eclipse.jdt.internal.compiler.lookup;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.eclipse.jdt.internal.compiler.ast.*;
import org.eclipse.jdt.internal.compiler.classfmt.ClassFileConstants;
import org.eclipse.jdt.internal.compiler.impl.CompilerOptions;
import org.eclipse.jdt.internal.compiler.problem.ProblemReporter;
import org.eclipse.jdt.internal.compiler.util.HashtableOfObject;
import org.eclipse.jdt.internal.compiler.util.SimpleSet;
import org.eclipse.jdt.internal.compiler.util.Sorting;

@SuppressWarnings({"rawtypes", "unchecked"})
public abstract class MethodVerifier extends ImplicitNullAnnotationVerifier {
	SourceTypeBinding type;
	HashtableOfObject inheritedMethods;
	HashtableOfObject currentMethods;
	/**
	 * Methods that are to be considered inherited even though they are overridden somewhere in the
	 * hierarchy - notably for bridge method generation
	 */
	HashtableOfObject inheritedOverriddenMethods;
	/*
Binding creation is responsible for reporting all problems with types:
	- all modifier problems (duplicates & multiple visibility modifiers + incompatible combinations - abstract/final)
		- plus invalid modifiers given the context (the verifier did not do this before)
	- qualified name collisions between a type and a package (types in default packages are excluded)
	- all type hierarchy problems:
		- cycles in the superclass or superinterface hierarchy
		- an ambiguous, invisible or missing superclass or superinterface
		- extending a final class
		- extending an interface instead of a class
		- implementing a class instead of an interface
		- implementing the same interface more than once (i.e. duplicate interfaces)
	- with nested types:
		- shadowing an enclosing type's source name
		- defining a static class or interface inside a non-static nested class
		- defining an interface as a local type (local types can only be classes)
*/
MethodVerifier(LookupEnvironment environment) {
	super(environment);
	this.type = null;  // Initialized with the public method verify(SourceTypeBinding)
	this.inheritedMethods = null;
	this.currentMethods = null;
	this.inheritedOverriddenMethods = null;
}
boolean areMethodsCompatible(MethodBinding one, MethodBinding two) {
	return areMethodsCompatible(one, two, this.environment);
}
static boolean areMethodsCompatible(MethodBinding one, MethodBinding two, LookupEnvironment environment) {
	// use the original methods to test compatibility, but do not check visibility, etc
	one = one.original();
	two = one.findOriginalInheritedMethod(two);

	if (two == null)
		return false; // method's declaringClass does not inherit from inheritedMethod's

	return isParameterSubsignature(one, two, environment);
}
boolean areReturnTypesCompatible(MethodBinding one, MethodBinding two) {
	return areReturnTypesCompatible(one, two, this.type.scope.environment());
}
public static boolean areReturnTypesCompatible(MethodBinding one, MethodBinding two, LookupEnvironment environment) {
	if (TypeBinding.equalsEquals(one.returnType, two.returnType)) return true;
	if (environment.globalOptions.sourceLevel >= ClassFileConstants.JDK1_5) {
		// short is compatible with int, but as far as covariance is concerned, its not
		if (one.returnType.isBaseType()) return false;

		if (!one.declaringClass.isInterface() && one.declaringClass.id == TypeIds.T_JavaLangObject)
			return two.returnType.isCompatibleWith(one.returnType); // interface methods inherit from Object

		return one.returnType.isCompatibleWith(two.returnType);
	} else {
		return areTypesEqual(one.returnType.erasure(), two.returnType.erasure());
	}
}
boolean canSkipInheritedMethods() {
	if (this.type.superclass() != null && this.type.superclass().isAbstract())
		return false;
	return this.type.superInterfaces() == Binding.NO_SUPERINTERFACES;
}
boolean canSkipInheritedMethods(MethodBinding one, MethodBinding two) {
	return two == null // already know one is not null
		|| TypeBinding.equalsEquals(one.declaringClass, two.declaringClass);
}
void checkAbstractMethod(MethodBinding abstractMethod) {
	if (mustImplementAbstractMethod(abstractMethod.declaringClass)) {
		TypeDeclaration typeDeclaration = this.type.scope.referenceContext;
		if (typeDeclaration != null) {
			MethodDeclaration missingAbstractMethod = typeDeclaration.addMissingAbstractMethodFor(abstractMethod);
			missingAbstractMethod.scope.problemReporter().abstractMethodMustBeImplemented(this.type, abstractMethod);
		} else {
			problemReporter().abstractMethodMustBeImplemented(this.type, abstractMethod);
		}
	}
}
void checkAgainstInheritedMethods(MethodBinding currentMethod, MethodBinding[] methods, int length, MethodBinding[] allInheritedMethods) {
	if (this.type.isAnnotationType()) { // annotation cannot override any method
		problemReporter().annotationCannotOverrideMethod(currentMethod, methods[length - 1]);
		return; // do not repoort against subsequent inherited methods
	}
	CompilerOptions options = this.type.scope.compilerOptions();
	// need to find the overridden methods to avoid blaming this type for issues which are already reported against a supertype
	// but cannot ignore an overridden inherited method completely when it comes to checking for bridge methods
	int[] overriddenInheritedMethods = length > 1 ? findOverriddenInheritedMethods(methods, length) : null;
	nextMethod : for (int i = length; --i >= 0;) {
		MethodBinding inheritedMethod = methods[i];
		if (overriddenInheritedMethods == null || overriddenInheritedMethods[i] == 0) {
			if (currentMethod.isStatic() != inheritedMethod.isStatic()) {  // Cannot override a static method or hide an instance method
				problemReporter(currentMethod).staticAndInstanceConflict(currentMethod, inheritedMethod);
				continue nextMethod;
			}

			// want to tag currentMethod even if return types are not equal
			if (inheritedMethod.isAbstract()) {
				if (inheritedMethod.declaringClass.isInterface()) {
					currentMethod.modifiers |= ExtraCompilerModifiers.AccImplementing;
				} else {
					currentMethod.modifiers |= ExtraCompilerModifiers.AccImplementing | ExtraCompilerModifiers.AccOverriding;
				}
				currentMethod.verifyOverrideCompatibility(inheritedMethod, this.type.scope);
//			with the above change an abstract method is tagged as implementing the inherited abstract method
//			if (!currentMethod.isAbstract() && inheritedMethod.isAbstract()) {
//				if ((currentMethod.modifiers & CompilerModifiers.AccOverriding) == 0)
//					currentMethod.modifiers |= CompilerModifiers.AccImplementing;
			} else if (inheritedMethod.isPublic() || !this.type.isInterface()) {
				// interface I { @Override Object clone(); } does not override Object#clone()
				if (currentMethod.isDefaultMethod()
						&& !inheritedMethod.isFinal() // overriding final is already reported, that's enough
						&& inheritedMethod.declaringClass.id == TypeIds.T_JavaLangObject)
				{
					// JLS 9.4.3 (Java8): default method cannot override method from j.l.Object
					problemReporter(currentMethod).defaultMethodOverridesObjectMethod(currentMethod);
				} else {
					// TODO (stephan) using AccImplementing for overrides of a default method works well
					// for OPTION_ReportMissingOverrideAnnotationForInterfaceMethodImplementation
					// but we should check if it has bad side effects elsewhere.
					if (inheritedMethod.isDefaultMethod())
						currentMethod.modifiers |= ExtraCompilerModifiers.AccImplementing;
					else
						currentMethod.modifiers |= ExtraCompilerModifiers.AccOverriding;
					currentMethod.verifyOverrideCompatibility(inheritedMethod, this.type.scope);
				}
			}

			if (!areReturnTypesCompatible(currentMethod, inheritedMethod)
					&& (currentMethod.returnType.tagBits & TagBits.HasMissingType) == 0) {
				if (reportIncompatibleReturnTypeError(currentMethod, inheritedMethod))
					continue nextMethod;
			}
			reportRawReferences(currentMethod, inheritedMethod); // if they were deferred, emit them now.
			if (currentMethod.thrownExceptions != Binding.NO_EXCEPTIONS)
				checkExceptions(currentMethod, inheritedMethod);
			if (inheritedMethod.isFinal())
				problemReporter(currentMethod).finalMethodCannotBeOverridden(currentMethod, inheritedMethod);
			if (!isAsVisible(currentMethod, inheritedMethod))
				problemReporter(currentMethod).visibilityConflict(currentMethod, inheritedMethod);
			if(inheritedMethod.isSynchronized() && !currentMethod.isSynchronized()) {
				problemReporter(currentMethod).missingSynchronizedOnInheritedMethod(currentMethod, inheritedMethod);
			}
			if (options.reportDeprecationWhenOverridingDeprecatedMethod && inheritedMethod.isViewedAsDeprecated()) {
				if (!currentMethod.isViewedAsDeprecated() || options.reportDeprecationInsideDeprecatedCode) {
					// check against the other inherited methods to see if they hide this inheritedMethod
					ReferenceBinding declaringClass = inheritedMethod.declaringClass;
					if (declaringClass.isInterface())
						for (int j = length; --j >= 0;)
							if (i != j && methods[j].declaringClass.implementsInterface(declaringClass, false))
								continue nextMethod;

					problemReporter(currentMethod).overridesDeprecatedMethod(currentMethod, inheritedMethod);
				}
			}
		}
		if (!inheritedMethod.isStatic() && !inheritedMethod.isFinal())
			checkForBridgeMethod(currentMethod, inheritedMethod, allInheritedMethods);
	}
	MethodBinding[] overridden = (MethodBinding[])this.inheritedOverriddenMethods.get(currentMethod.selector);
	if (overridden != null) {
		for (int i = overridden.length; --i >= 0;) {
			MethodBinding inheritedMethod = overridden[i];
			if (isParameterSubsignature(currentMethod, inheritedMethod) &&
					!inheritedMethod.isStatic() && !inheritedMethod.isFinal())
				checkForBridgeMethod(currentMethod, inheritedMethod, allInheritedMethods);
		}
	}
}
void addBridgeMethodCandidate(MethodBinding overriddenMethod) {
	MethodBinding[] existing = (MethodBinding[])this.inheritedOverriddenMethods.get(overriddenMethod.selector);
	if (existing == null) {
		existing = new MethodBinding[]{overriddenMethod};
	} else {
		int length = existing.length;
		System.arraycopy(existing, 0, existing = new MethodBinding[length + 1], 0, length);
		existing[length] = overriddenMethod;
	}
	this.inheritedOverriddenMethods.put(overriddenMethod.selector, existing);
}

public void reportRawReferences(MethodBinding currentMethod, MethodBinding inheritedMethod) {
	// nothing to do here. Real action happens at 1.5+
}
void checkConcreteInheritedMethod(MethodBinding concreteMethod, MethodBinding[] abstractMethods) {
	// Remember that interfaces can only define public instance methods
	if (concreteMethod.isStatic())
		// Cannot inherit a static method which is specified as an instance method by an interface
		problemReporter().staticInheritedMethodConflicts(this.type, concreteMethod, abstractMethods);
	if (!concreteMethod.isPublic()) {
		int index = 0, length = abstractMethods.length;
		if (concreteMethod.isProtected()) {
			for (; index < length; index++)
				if (abstractMethods[index].isPublic()) break;
		} else if (concreteMethod.isDefault()) {
			for (; index < length; index++)
				if (!abstractMethods[index].isDefault()) break;
		}
		if (index < length)
			problemReporter().inheritedMethodReducesVisibility(this.type, concreteMethod, abstractMethods);
	}
	if (concreteMethod.thrownExceptions != Binding.NO_EXCEPTIONS)
		for (int i = abstractMethods.length; --i >= 0;)
			checkExceptions(concreteMethod, abstractMethods[i]);

	// A subclass inheriting this method and putting it up as the implementation to meet its own
	// obligations should qualify as a use.
	if (concreteMethod.isOrEnclosedByPrivateType())
		concreteMethod.original().modifiers |= ExtraCompilerModifiers.AccLocallyUsed;
}

/*
"8.4.4"
Verify that newExceptions are all included in inheritedExceptions.
Assumes all exceptions are valid and throwable.
Unchecked exceptions (compatible with runtime & error) are ignored (see the spec on pg. 203).
*/
void checkExceptions(MethodBinding newMethod, MethodBinding inheritedMethod) {
	ReferenceBinding[] newExceptions = resolvedExceptionTypesFor(newMethod);
	ReferenceBinding[] inheritedExceptions = resolvedExceptionTypesFor(inheritedMethod);
	for (int i = newExceptions.length; --i >= 0;) {
		ReferenceBinding newException = newExceptions[i];
		int j = inheritedExceptions.length;
		while (--j > -1 && !isSameClassOrSubclassOf(newException, inheritedExceptions[j])){/*empty*/}
		if (j == -1)
			if (!newException.isUncheckedException(false)
					&& (newException.tagBits & TagBits.HasMissingType) == 0) {
				problemReporter(newMethod).incompatibleExceptionInThrowsClause(this.type, newMethod, inheritedMethod, newException);
			}
	}
}

void checkForBridgeMethod(MethodBinding currentMethod, MethodBinding inheritedMethod, MethodBinding[] allInheritedMethods) {
	// no op before 1.5
}

void checkForMissingHashCodeMethod() {
	MethodBinding[] choices = this.type.getMethods(TypeConstants.EQUALS);
	boolean overridesEquals = false;
	for (int i = choices.length; !overridesEquals && --i >= 0;)
		overridesEquals = choices[i].parameters.length == 1 && choices[i].parameters[0].id == TypeIds.T_JavaLangObject;
	if (overridesEquals) {
		MethodBinding hashCodeMethod = this.type.getExactMethod(TypeConstants.HASHCODE, Binding.NO_PARAMETERS, null);
		if (hashCodeMethod != null && hashCodeMethod.declaringClass.id == TypeIds.T_JavaLangObject)
			this.problemReporter().shouldImplementHashcode(this.type);
	}
}

void checkForRedundantSuperinterfaces(ReferenceBinding superclass, ReferenceBinding[] superInterfaces) {
	if (superInterfaces == Binding.NO_SUPERINTERFACES) return;

	SimpleSet interfacesToCheck = new SimpleSet(superInterfaces.length);
	SimpleSet redundantInterfaces = null;  // bark but once.
	for (int i = 0, l = superInterfaces.length; i < l; i++) {
		ReferenceBinding toCheck = superInterfaces[i];
		for (int j = 0; j < l; j++) {
			ReferenceBinding implementedInterface = superInterfaces[j];
			if (i != j && toCheck.implementsInterface(implementedInterface, true)) {
				if (redundantInterfaces == null) {
					redundantInterfaces = new SimpleSet(3);
				} else if (redundantInterfaces.includes(implementedInterface)) {
					continue;
				}
				redundantInterfaces.add(implementedInterface);
				TypeReference[] refs = this.type.scope.referenceContext.superInterfaces;
				for (int r = 0, rl = refs.length; r < rl; r++) {
					if (TypeBinding.equalsEquals(refs[r].resolvedType, toCheck)) {
						problemReporter().redundantSuperInterface(this.type, refs[j], implementedInterface, toCheck);
						break; // https://bugs.eclipse.org/bugs/show_bug.cgi?id=320911
					}
				}
			}
		}
		interfacesToCheck.add(toCheck);
	}

	ReferenceBinding[] itsInterfaces = null;
	SimpleSet inheritedInterfaces = new SimpleSet(5);
	ReferenceBinding superType = superclass;
	while (superType != null && superType.isValidBinding()) {
		if ((itsInterfaces = superType.superInterfaces()) != Binding.NO_SUPERINTERFACES) {
			for (int i = 0, l = itsInterfaces.length; i < l; i++) {
				ReferenceBinding inheritedInterface = itsInterfaces[i];
				if (!inheritedInterfaces.includes(inheritedInterface) && inheritedInterface.isValidBinding()) {
					if (interfacesToCheck.includes(inheritedInterface)) {
						if (redundantInterfaces == null) {
							redundantInterfaces = new SimpleSet(3);
						} else if (redundantInterfaces.includes(inheritedInterface)) {
							continue;
						}
						redundantInterfaces.add(inheritedInterface);
						TypeReference[] refs = this.type.scope.referenceContext.superInterfaces;
						for (int r = 0, rl = refs.length; r < rl; r++) {
							if (TypeBinding.equalsEquals(refs[r].resolvedType, inheritedInterface)) {
								problemReporter().redundantSuperInterface(this.type, refs[r], inheritedInterface, superType);
								break;
							}
						}
					} else {
						inheritedInterfaces.add(inheritedInterface);
					}
				}
			}
		}
		superType = superType.superclass();
	}

	int nextPosition = inheritedInterfaces.elementSize;
	if (nextPosition == 0) return;
	ReferenceBinding[] interfacesToVisit = new ReferenceBinding[nextPosition];
	inheritedInterfaces.asArray(interfacesToVisit);
	for (int i = 0; i < nextPosition; i++) {
		superType = interfacesToVisit[i];
		if ((itsInterfaces = superType.superInterfaces()) != Binding.NO_SUPERINTERFACES) {
			int itsLength = itsInterfaces.length;
			if (nextPosition + itsLength >= interfacesToVisit.length)
				System.arraycopy(interfacesToVisit, 0, interfacesToVisit = new ReferenceBinding[nextPosition + itsLength + 5], 0, nextPosition);
			for (int a = 0; a < itsLength; a++) {
				ReferenceBinding inheritedInterface = itsInterfaces[a];
				if (!inheritedInterfaces.includes(inheritedInterface) && inheritedInterface.isValidBinding()) {
					if (interfacesToCheck.includes(inheritedInterface)) {
						if (redundantInterfaces == null) {
							redundantInterfaces = new SimpleSet(3);
						} else if (redundantInterfaces.includes(inheritedInterface)) {
							continue;
						}
						redundantInterfaces.add(inheritedInterface);
						TypeReference[] refs = this.type.scope.referenceContext.superInterfaces;
						for (int r = 0, rl = refs.length; r < rl; r++) {
							if (TypeBinding.equalsEquals(refs[r].resolvedType, inheritedInterface)) {
								problemReporter().redundantSuperInterface(this.type, refs[r], inheritedInterface, superType);
								break;
							}
						}
					} else {
						inheritedInterfaces.add(inheritedInterface);
						interfacesToVisit[nextPosition++] = inheritedInterface;
					}
				}
			}
		}
	}
}

void checkInheritedMethods(MethodBinding[] methods, int length, boolean[] isOverridden, boolean[] isInherited) {
	/*
	1. find concrete method
	2. if it doesn't exist then find first inherited abstract method whose return type is compatible with all others
	   if no such method exists then report incompatible return type error
	   otherwise report abstract method must be implemented
	3. if concrete method exists, check to see if its return type is compatible with all others
	   if it is then check concrete method against abstract methods
	   if its not, then find most specific abstract method & report abstract method must be implemented since concrete method is insufficient
	   if no most specific return type abstract method exists, then report incompatible return type with all inherited methods
	*/

	MethodBinding concreteMethod = this.type.isInterface() || methods[0].isAbstract() ? null : methods[0];
	if (concreteMethod == null) {
		MethodBinding bestAbstractMethod = length == 1 ? methods[0] : findBestInheritedAbstractOrDefaultMethod(methods, length);
		boolean noMatch = bestAbstractMethod == null;
		if (noMatch)
			bestAbstractMethod = methods[0];
		if (mustImplementAbstractMethod(bestAbstractMethod.declaringClass)) {
			TypeDeclaration typeDeclaration = this.type.scope.referenceContext;
			MethodBinding superclassAbstractMethod = methods[0];
			if (superclassAbstractMethod == bestAbstractMethod || superclassAbstractMethod.declaringClass.isInterface()) {
				if (typeDeclaration != null) {
					MethodDeclaration missingAbstractMethod = typeDeclaration.addMissingAbstractMethodFor(bestAbstractMethod);
					missingAbstractMethod.scope.problemReporter().abstractMethodMustBeImplemented(this.type, bestAbstractMethod);
				} else {
					problemReporter().abstractMethodMustBeImplemented(this.type, bestAbstractMethod);
				}
			} else {
				if (typeDeclaration != null) {
					MethodDeclaration missingAbstractMethod = typeDeclaration.addMissingAbstractMethodFor(bestAbstractMethod);
					missingAbstractMethod.scope.problemReporter().abstractMethodMustBeImplemented(this.type, bestAbstractMethod, superclassAbstractMethod);
				} else {
					problemReporter().abstractMethodMustBeImplemented(this.type, bestAbstractMethod, superclassAbstractMethod);
				}
			}
		} else if (noMatch) {
			problemReporter().inheritedMethodsHaveIncompatibleReturnTypes(this.type, methods, length, isOverridden);
		}
		return;
	}
	if (length < 2) return; // nothing else to check

	int index = length;
	while (--index > 0 && checkInheritedReturnTypes(concreteMethod, methods[index])) {/*empty*/}
	if (index > 0) {
		// concreteMethod is not the best match
		MethodBinding bestAbstractMethod = findBestInheritedAbstractOrDefaultMethod(methods, length);
		if (bestAbstractMethod == null)
			problemReporter().inheritedMethodsHaveIncompatibleReturnTypes(this.type, methods, length, isOverridden);
		else // can only happen in >= 1.5 since return types must be equal prior to 1.5
			problemReporter().abstractMethodMustBeImplemented(this.type, bestAbstractMethod, concreteMethod);
		return;
	}

	MethodBinding[] abstractMethods = new MethodBinding[length - 1];
	index = 0;
	for (int i = 0; i < length; i++)
		if (methods[i].isAbstract() || (methods[i] != concreteMethod && methods[i].isDefaultMethod()))
			abstractMethods[index++] = methods[i];
	if (index == 0) return; // can happen with methods that contain 'equal' Missing Types, see bug 257384
	if (index < abstractMethods.length)
		System.arraycopy(abstractMethods, 0, abstractMethods = new MethodBinding[index], 0, index);
	checkConcreteInheritedMethod(concreteMethod, abstractMethods);
}
boolean checkInheritedReturnTypes(MethodBinding method, MethodBinding otherMethod) {
	if (areReturnTypesCompatible(method, otherMethod)) return true;

	if (!this.type.isInterface())
		if (method.declaringClass.isClass() || !this.type.implementsInterface(method.declaringClass, false))
			if (otherMethod.declaringClass.isClass() || !this.type.implementsInterface(otherMethod.declaringClass, false))
				return true; // do not complain since the superclass already got blamed

	return false;
}

/*
For each inherited method identifier (message pattern - vm signature minus the return type)
	if current method exists
		if current's vm signature does not match an inherited signature then complain
		else compare current's exceptions & visibility against each inherited method
	else
		if inherited methods = 1
			if inherited is abstract && type is NOT an interface or abstract, complain
		else
			if vm signatures do not match complain
			else
				find the concrete implementation amongst the abstract methods (can only be 1)
				if one exists then
					it must be a public instance method
					compare concrete's exceptions against each abstract method
				else
					complain about missing implementation only if type is NOT an interface or abstract
*/
abstract void checkMethods();
void checkPackagePrivateAbstractMethod(MethodBinding abstractMethod) {
	// check that the inherited abstract method (package private visibility) is implemented within the same package
	PackageBinding necessaryPackage = abstractMethod.declaringClass.fPackage;
	if (necessaryPackage == this.type.fPackage) return; // not a problem

	ReferenceBinding superType = this.type.superclass();
	char[] selector = abstractMethod.selector;
	do {
		if (!superType.isValidBinding()) return;
		if (!superType.isAbstract()) return; // closer non abstract super type will be flagged instead

		if (necessaryPackage == superType.fPackage) {
			MethodBinding[] methods = superType.getMethods(selector);
			nextMethod : for (int m = methods.length; --m >= 0;) {
				MethodBinding method = methods[m];
				if (method.isPrivate() || method.isConstructor() || method.isDefaultAbstract())
					continue nextMethod;
				if (areMethodsCompatible(method, abstractMethod))
					return; // found concrete implementation of abstract method in same package
			}
		}
	} while (TypeBinding.notEquals((superType = superType.superclass()), abstractMethod.declaringClass));

	// non visible abstract methods cannot be overridden so the type must be defined abstract
	problemReporter().abstractMethodCannotBeOverridden(this.type, abstractMethod);
}

void computeInheritedMethods() {
	ReferenceBinding superclass = this.type.isInterface()
		? this.type.scope.getJavaLangObject() // check interface methods against Object
		: this.type.superclass(); // class or enum
	computeInheritedMethods(superclass, this.type.superInterfaces());
	checkForRedundantSuperinterfaces(superclass, this.type.superInterfaces());
}

void computeInheritedMethods(ReferenceBinding superclass, ReferenceBinding[] superInterfaces) {
	computeInheritedMethods(superclass, superInterfaces, false);
}

/*
Binding creation is responsible for reporting:
	- all modifier problems (duplicates & multiple visibility modifiers + incompatible combinations)
		- plus invalid modifiers given the context... examples:
			- interface methods can only be public
			- abstract methods can only be defined by abstract classes
	- collisions... 2 methods with identical vmSelectors
	- multiple methods with the same message pattern but different return types
	- ambiguous, invisible or missing return/argument/exception types
	- check the type of any array is not void
	- check that each exception type is Throwable or a subclass of it
*/
void computeInheritedMethods(ReferenceBinding superclass, ReferenceBinding[] superInterfaces, boolean verifyingTypeVariableBounds) {
	// only want to remember inheritedMethods that can have an impact on the current type
	// if an inheritedMethod has been 'replaced' by a supertype's method then skip it, however
    // see usage of canOverridingMethodDifferInErasure below.
	this.inheritedMethods = new HashtableOfObject(51); // maps method selectors to an array of methods... must search to match paramaters & return type

	this.inheritedOverriddenMethods = new HashtableOfObject(11);
	ReferenceBinding superType = superclass;
	HashtableOfObject nonVisibleDefaultMethods = new HashtableOfObject(3); // maps method selectors to an array of methods

	while (superType != null && superType.isValidBinding()) {

		MethodBinding[] methods = superType.unResolvedMethods();
		nextMethod : for (int m = methods.length; --m >= 0;) {
			MethodBinding inheritedMethod = methods[m];
			if (inheritedMethod.isPrivate() || inheritedMethod.isConstructor() || inheritedMethod.isDefaultAbstract())
				continue nextMethod;
			MethodBinding[] existingMethods = (MethodBinding[]) this.inheritedMethods.get(inheritedMethod.selector);
			if (existingMethods != null) {
				existing : for (int i = 0, length = existingMethods.length; i < length; i++) {
					MethodBinding existingMethod = existingMethods[i];
					// https://bugs.eclipse.org/bugs/show_bug.cgi?id=302358, skip inherited method only if any overriding version
					// in a subclass is guaranteed to have the same erasure as an existing method.
					if (TypeBinding.notEquals(existingMethod.declaringClass, inheritedMethod.declaringClass) && areMethodsCompatible(existingMethod, inheritedMethod) && !canOverridingMethodDifferInErasure(existingMethod, inheritedMethod)) {
						if (inheritedMethod.isDefault()) {
							if (inheritedMethod.isAbstract()) {
								checkPackagePrivateAbstractMethod(inheritedMethod);
							} else if (existingMethod.declaringClass.fPackage != inheritedMethod.declaringClass.fPackage) {
								if (this.type.fPackage == inheritedMethod.declaringClass.fPackage && !areReturnTypesCompatible(inheritedMethod, existingMethod))
									continue existing; // may need to record incompatible return type
							}
						}
						if (TypeBinding.notEquals(inheritedMethod.returnType.erasure(), existingMethod.returnType.erasure()) &&
								areReturnTypesCompatible(existingMethod, inheritedMethod)) {
							addBridgeMethodCandidate(inheritedMethod);
						}
						continue nextMethod;
					}
				}
			}

			if (!inheritedMethod.isDefault() || inheritedMethod.declaringClass.fPackage == this.type.fPackage || verifyingTypeVariableBounds) {
				if (existingMethods == null) {
					existingMethods = new MethodBinding[] {inheritedMethod};
				} else {
					int length = existingMethods.length;
					System.arraycopy(existingMethods, 0, existingMethods = new MethodBinding[length + 1], 0, length);
					existingMethods[length] = inheritedMethod;
				}
				this.inheritedMethods.put(inheritedMethod.selector, existingMethods);
			} else {
				MethodBinding[] nonVisible = (MethodBinding[]) nonVisibleDefaultMethods.get(inheritedMethod.selector);
				if (nonVisible != null && inheritedMethod.isAbstract())
					for (int i = 0, l = nonVisible.length; i < l; i++)
						if (areMethodsCompatible(nonVisible[i], inheritedMethod))
							continue nextMethod;
				if (nonVisible == null) {
					nonVisible = new MethodBinding[] {inheritedMethod};
				} else {
					int length = nonVisible.length;
					System.arraycopy(nonVisible, 0, nonVisible = new MethodBinding[length + 1], 0, length);
					nonVisible[length] = inheritedMethod;
				}
				nonVisibleDefaultMethods.put(inheritedMethod.selector, nonVisible);

				if (inheritedMethod.isAbstract() && !this.type.isAbstract()) // non visible abstract methods cannot be overridden so the type must be defined abstract
					problemReporter().abstractMethodCannotBeOverridden(this.type, inheritedMethod);

				MethodBinding[] current = (MethodBinding[]) this.currentMethods.get(inheritedMethod.selector);
				if (current != null && !inheritedMethod.isStatic()) { // non visible methods cannot be overridden so a warning is issued
					foundMatch : for (int i = 0, length = current.length; i < length; i++) {
						if (!current[i].isStatic() && areMethodsCompatible(current[i], inheritedMethod)) {
							problemReporter().overridesPackageDefaultMethod(current[i], inheritedMethod);
							break foundMatch;
						}
					}
				}
			}
		}
		superType = superType.superclass();
	}

	List superIfcList = new ArrayList();
	HashSet seenTypes = new HashSet();
	collectAllDistinctSuperInterfaces(superInterfaces, seenTypes, superIfcList);
	ReferenceBinding currentSuper = superclass;
	while (currentSuper != null && currentSuper.id != TypeIds.T_JavaLangObject) {
		collectAllDistinctSuperInterfaces(currentSuper.superInterfaces(), seenTypes, superIfcList);
		currentSuper = currentSuper.superclass();
	}

	if (superIfcList.size() == 0) return;

	if (superIfcList.size() == 1) {
		superInterfaces = new ReferenceBinding[] { (ReferenceBinding) superIfcList.get(0) };
	} else {
		superInterfaces = (ReferenceBinding[]) superIfcList.toArray(new ReferenceBinding[superIfcList.size()]);
		superInterfaces = Sorting.sortTypes(superInterfaces);
	}

	SimpleSet skip = findSuperinterfaceCollisions(superclass, superInterfaces);
	int len = superInterfaces.length;
	for (int i = len-1; i >= 0; i--) {
		superType = superInterfaces[i];
		if (superType.isValidBinding()) {
			if (skip != null && skip.includes(superType)) continue;

			MethodBinding[] methods = superType.unResolvedMethods();
			nextMethod : for (int m = methods.length; --m >= 0;) { // Interface methods are all abstract public
				MethodBinding inheritedMethod = methods[m];
				if (inheritedMethod.isStatic() || inheritedMethod.isPrivate()) continue nextMethod;
				MethodBinding[] existingMethods = (MethodBinding[]) this.inheritedMethods.get(inheritedMethod.selector);
				if (existingMethods == null) {
					existingMethods = new MethodBinding[] {inheritedMethod};
				} else {
					int length = existingMethods.length;
					// look to see if any of the existingMethods implement this inheritedMethod
					// https://bugs.eclipse.org/bugs/show_bug.cgi?id=302358, skip inherited method only if any overriding version
					// in a subclass is guaranteed to have the same erasure as an existing method.
					for (int e = 0; e < length; e++) {
						if (isInterfaceMethodImplemented(inheritedMethod, existingMethods[e], superType)) {
							if (TypeBinding.notEquals(inheritedMethod.returnType.erasure(), existingMethods[e].returnType.erasure())) {
								// overridden, but with different return type, need to check
								// for bridge method
								addBridgeMethodCandidate(inheritedMethod);
							}
							if (!canOverridingMethodDifferInErasure(existingMethods[e], inheritedMethod))
								continue nextMethod;
						}
					}
					System.arraycopy(existingMethods, 0, existingMethods = new MethodBinding[length + 1], 0, length);
					existingMethods[length] = inheritedMethod;
				}
				this.inheritedMethods.put(inheritedMethod.selector, existingMethods);
			}
		}
	}
}

void collectAllDistinctSuperInterfaces(ReferenceBinding[] superInterfaces, Set seen, List result) {
	// use 'seen' to avoid duplicates, use result to maintain stable order
	int length = superInterfaces.length;
	for (int i=0; i= 0;) {
		MethodBinding method = methods[m];
		if (!(method.isConstructor() || method.isDefaultAbstract())) { // keep all methods which are NOT constructors or default abstract
			MethodBinding[] existingMethods = (MethodBinding[]) this.currentMethods.get(method.selector);
			if (existingMethods == null)
				existingMethods = new MethodBinding[1];
			else
				System.arraycopy(existingMethods, 0,
					(existingMethods = new MethodBinding[existingMethods.length + 1]), 0, existingMethods.length - 1);
			existingMethods[existingMethods.length - 1] = method;
			this.currentMethods.put(method.selector, existingMethods);
		}
	}
}

MethodBinding computeSubstituteMethod(MethodBinding inheritedMethod, MethodBinding currentMethod) {
	return computeSubstituteMethod(inheritedMethod, currentMethod, this.environment);
}

public static MethodBinding computeSubstituteMethod(MethodBinding inheritedMethod, MethodBinding currentMethod, LookupEnvironment environment) {
	if (inheritedMethod == null) return null;
	if (currentMethod.parameters.length != inheritedMethod.parameters.length) return null; // no match

	// due to hierarchy & compatibility checks, we need to ensure these 2 methods are resolved
	if (currentMethod.declaringClass instanceof BinaryTypeBinding)
		((BinaryTypeBinding) currentMethod.declaringClass).resolveTypesFor(currentMethod);
	if (inheritedMethod.declaringClass instanceof BinaryTypeBinding)
		((BinaryTypeBinding) inheritedMethod.declaringClass).resolveTypesFor(inheritedMethod);

	TypeVariableBinding[] inheritedTypeVariables = inheritedMethod.typeVariables;
	int inheritedLength = inheritedTypeVariables.length;
	if (inheritedLength == 0) return inheritedMethod; // no substitution needed
	TypeVariableBinding[] typeVariables = currentMethod.typeVariables;
	int length = typeVariables.length;
	if (length == 0)
		return inheritedMethod.asRawMethod(environment);
	if (length != inheritedLength)
		return inheritedMethod; // no match JLS 8.4.2

	// interface I {  void foo(T t); }
	// class X implements I { public  void foo(T t) {} }
	// for the above case, we do not want to answer the substitute method since its not a match
	TypeBinding[] arguments = new TypeBinding[length];
	System.arraycopy(typeVariables, 0, arguments, 0, length);
	ParameterizedGenericMethodBinding substitute =
		environment.createParameterizedGenericMethod(inheritedMethod, arguments);
	for (int i = 0; i < inheritedLength; i++) {
		TypeVariableBinding inheritedTypeVariable = inheritedTypeVariables[i];
		TypeVariableBinding typeVariable = (TypeVariableBinding) arguments[i]; // cast is safe by construction: arguments is copied from TypeVariableBinding[]
		if (TypeBinding.equalsEquals(typeVariable.firstBound, inheritedTypeVariable.firstBound)) {
			if (typeVariable.firstBound == null)
				continue; // both are null
		} else if (typeVariable.firstBound != null && inheritedTypeVariable.firstBound != null) {
			if (typeVariable.firstBound.isClass() != inheritedTypeVariable.firstBound.isClass())
				return inheritedMethod; // not a match
		}
		if (TypeBinding.notEquals(Scope.substitute(substitute, inheritedTypeVariable.superclass), typeVariable.superclass))
			return inheritedMethod; // not a match
		int interfaceLength = inheritedTypeVariable.superInterfaces.length;
		ReferenceBinding[] interfaces = typeVariable.superInterfaces;
		if (interfaceLength != interfaces.length)
			return inheritedMethod; // not a match
		next : for (int j = 0; j < interfaceLength; j++) {
			TypeBinding superType = Scope.substitute(substitute, inheritedTypeVariable.superInterfaces[j]);
			for (int k = 0; k < interfaceLength; k++)
				if (TypeBinding.equalsEquals(superType, interfaces[k]))
					continue next;
			return inheritedMethod; // not a match
		}
	}
   return substitute;
}

static boolean couldMethodOverride(MethodBinding method, MethodBinding inheritedMethod) {
	if (!org.eclipse.jdt.core.compiler.CharOperation.equals(method.selector, inheritedMethod.selector))
		return false;
	if (method == inheritedMethod || method.isStatic() || inheritedMethod.isStatic())
		return false;
	if (inheritedMethod.isPrivate())
		return false;
	if (inheritedMethod.isDefault() && method.declaringClass.getPackage() != inheritedMethod.declaringClass.getPackage())
		return false;
	if (!method.isPublic()) { // inheritedMethod is either public or protected & method is less than public
		if (inheritedMethod.isPublic())
			return false;
		if (inheritedMethod.isProtected() && !method.isProtected())
			return false;
	}
	return true;
}

// Answer whether the method overrides the inheritedMethod
// Check the necessary visibility rules & inheritance from the inheritedMethod's declaringClass
// See isMethodSubsignature() for parameter comparisons
public boolean doesMethodOverride(MethodBinding method, MethodBinding inheritedMethod) {
	return doesMethodOverride(method, inheritedMethod, this.environment);
}
public static boolean doesMethodOverride(MethodBinding method, MethodBinding inheritedMethod, LookupEnvironment environment) {
	return couldMethodOverride(method, inheritedMethod) && areMethodsCompatible(method, inheritedMethod, environment);
}
SimpleSet findSuperinterfaceCollisions(ReferenceBinding superclass, ReferenceBinding[] superInterfaces) {
	return null; // noop in 1.4
}

MethodBinding findBestInheritedAbstractOrDefaultMethod(MethodBinding[] methods, int length) {
	findMethod : for (int i = 0; i < length; i++) {
		MethodBinding method = methods[i];
		if (!(method.isAbstract() || method.isDefaultMethod())) continue findMethod;
		for (int j = 0; j < length; j++) {
			if (i == j) continue;
			if (!checkInheritedReturnTypes(method, methods[j])) {
				if (this.type.isInterface() && methods[j].declaringClass.id == TypeIds.T_JavaLangObject)
					return method; // do not complain since the super interface already got blamed
				continue findMethod;
			}
		}
		return method;
	}
	return null;
}

int[] findOverriddenInheritedMethods(MethodBinding[] methods, int length) {
	// NOTE assumes length > 1
	// inherited methods are added as we walk up the superclass hierarchy, then each superinterface
	// so method[1] from a class can NOT override method[0], but methods from superinterfaces can
	// since superinterfaces can be added from different superclasses or other superinterfaces
	int[] toSkip = null;
	int i = 0;
	ReferenceBinding declaringClass = methods[i].declaringClass;
	if (!declaringClass.isInterface()) {
		// in the first pass, skip overridden methods from superclasses
		// only keep methods from the closest superclass, all others from higher superclasses can be skipped
		// NOTE: methods were added in order by walking up the superclass hierarchy
		ReferenceBinding declaringClass2 = methods[++i].declaringClass;
		while (TypeBinding.equalsEquals(declaringClass, declaringClass2)) {
			if (++i == length) return null;
			declaringClass2 = methods[i].declaringClass;
		}
		if (!declaringClass2.isInterface()) {
			// skip all methods from different superclasses
			if (declaringClass.fPackage != declaringClass2.fPackage && methods[i].isDefault()) return null;
			toSkip = new int[length];
			do {
				toSkip[i] = -1;
				if (++i == length) return toSkip;
				declaringClass2 = methods[i].declaringClass;
			} while (!declaringClass2.isInterface());
		}
	}
	// in the second pass, skip overridden methods from superinterfaces
	// NOTE: superinterfaces can appear in 'random' order
	nextMethod : for (; i < length; i++) {
		if (toSkip != null && toSkip[i] == -1) continue nextMethod;
		declaringClass = methods[i].declaringClass;
		for (int j = i + 1; j < length; j++) {
			if (toSkip != null && toSkip[j] == -1) continue;
			ReferenceBinding declaringClass2 = methods[j].declaringClass;
			if (TypeBinding.equalsEquals(declaringClass, declaringClass2)) continue;
			if (declaringClass.implementsInterface(declaringClass2, true)) {
				if (toSkip == null)
					toSkip = new int[length];
				toSkip[j] = -1;
			} else if (declaringClass2.implementsInterface(declaringClass, true)) {
				if (toSkip == null)
					toSkip = new int[length];
				toSkip[i] = -1;
				continue nextMethod;
			}
		}
	}
	return toSkip;
}

boolean isAsVisible(MethodBinding newMethod, MethodBinding inheritedMethod) {
	if (inheritedMethod.modifiers == newMethod.modifiers) return true;

	if (newMethod.isPublic()) return true;		// Covers everything
	if (inheritedMethod.isPublic()) return false;

	if (newMethod.isProtected()) return true;
	if (inheritedMethod.isProtected()) return false;

	return !newMethod.isPrivate();		// The inheritedMethod cannot be private since it would not be visible
}

boolean isInterfaceMethodImplemented(MethodBinding inheritedMethod, MethodBinding existingMethod, ReferenceBinding superType) {
	// skip interface method with the same signature if visible to its declaringClass
	return areParametersEqual(existingMethod, inheritedMethod) && existingMethod.declaringClass.implementsInterface(superType, true);
}

public boolean isMethodSubsignature(MethodBinding method, MethodBinding inheritedMethod) {
	return org.eclipse.jdt.core.compiler.CharOperation.equals(method.selector, inheritedMethod.selector)
		&& isParameterSubsignature(method, inheritedMethod);
}

boolean isParameterSubsignature(MethodBinding method, MethodBinding inheritedMethod) {
	return isParameterSubsignature(method, inheritedMethod, this.environment);
}
static boolean isParameterSubsignature(MethodBinding method, MethodBinding inheritedMethod, LookupEnvironment environment) {
	MethodBinding substitute = computeSubstituteMethod(inheritedMethod, method, environment);
	return substitute != null && isSubstituteParameterSubsignature(method, substitute, environment);
}

//if method "overrides" substituteMethod then we can skip over substituteMethod while resolving a message send
//if it does not then a name clash error is likely
boolean isSubstituteParameterSubsignature(MethodBinding method, MethodBinding substituteMethod) {
	return isSubstituteParameterSubsignature(method, substituteMethod, this.environment);
}

public static boolean isSubstituteParameterSubsignature(MethodBinding method, MethodBinding substituteMethod, LookupEnvironment environment) {
	if (!areParametersEqual(method, substituteMethod)) {
		// method can still override substituteMethod in cases like :
		//  void c(U u) {}
		// @Override void c(Number n) {}
		// but method cannot have a "generic-enabled" parameter type
		if (substituteMethod.hasSubstitutedParameters() && method.areParameterErasuresEqual(substituteMethod))
			return method.typeVariables == Binding.NO_TYPE_VARIABLES && !hasGenericParameter(method);

		// see https://bugs.eclipse.org/bugs/show_bug.cgi?id=279836
		if (method.declaringClass.isRawType() && substituteMethod.declaringClass.isRawType())
			if (method.hasSubstitutedParameters() && substituteMethod.hasSubstitutedParameters())
				return areMethodsCompatible(method, substituteMethod, environment);

		return false;
	}

	if (substituteMethod instanceof ParameterizedGenericMethodBinding) {
		if (method.typeVariables != Binding.NO_TYPE_VARIABLES)
			return !((ParameterizedGenericMethodBinding) substituteMethod).isRaw;
		// since substituteMethod has substituted type variables, method cannot have a generic signature AND no variables -> its a name clash if it does
		return !hasGenericParameter(method);
	}

	// if method has its own variables, then substituteMethod failed bounds check in computeSubstituteMethod()
	return method.typeVariables == Binding.NO_TYPE_VARIABLES;
}
static boolean hasGenericParameter(MethodBinding method) {
	if (method.genericSignature() == null) return false;

	// may be only the return type that is generic, need to check parameters
	TypeBinding[] params = method.parameters;
	for (int i = 0, l = params.length; i < l; i++) {
		TypeBinding param = params[i].leafComponentType();
		if (param instanceof ReferenceBinding) {
			int modifiers = ((ReferenceBinding) param).modifiers;
			if ((modifiers & ExtraCompilerModifiers.AccGenericSignature) != 0)
				return true;
		}
	}
	return false;
}

boolean isSameClassOrSubclassOf(ReferenceBinding testClass, ReferenceBinding superclass) {
	do {
		if (TypeBinding.equalsEquals(testClass, superclass)) return true;
	} while ((testClass = testClass.superclass()) != null);
	return false;
}

boolean mustImplementAbstractMethod(ReferenceBinding declaringClass) {
	// if the type's superclass is an abstract class, then all abstract methods must be implemented
	// otherwise, skip it if the type's superclass must implement any of the inherited methods
	if (!mustImplementAbstractMethods()) return false;
	ReferenceBinding superclass = this.type.superclass();
	if (declaringClass.isClass()) {
		while (superclass.isAbstract() && TypeBinding.notEquals(superclass, declaringClass))
			superclass = superclass.superclass(); // find the first concrete superclass or the abstract declaringClass
	} else {
		if (this.type.implementsInterface(declaringClass, false))
			if (!superclass.implementsInterface(declaringClass, true)) // only if a superclass does not also implement the interface
				return true;
		while (superclass.isAbstract() && !superclass.implementsInterface(declaringClass, false))
			superclass = superclass.superclass(); // find the first concrete superclass or the superclass which implements the interface
	}
	return superclass.isAbstract();		// if it is a concrete class then we have already reported problem against it
}

boolean mustImplementAbstractMethods() {
	return !this.type.isInterface() && !this.type.isAbstract();
}

ProblemReporter problemReporter() {
	return this.type.scope.problemReporter();
}

ProblemReporter problemReporter(MethodBinding currentMethod) {
	ProblemReporter reporter = problemReporter();
	if (TypeBinding.equalsEquals(currentMethod.declaringClass, this.type) && currentMethod.sourceMethod() != null)	// only report against the currentMethod if its implemented by the type
		reporter.referenceContext = currentMethod.sourceMethod();
	return reporter;
}

/**
 * Return true and report an incompatibleReturnType error if currentMethod's
 * return type is strictly incompatible with inheritedMethod's, else return
 * false and report an unchecked conversion warning. Do not call when
 * areReturnTypesCompatible(currentMethod, inheritedMethod) returns true.
 * @param currentMethod the (potentially) inheriting method
 * @param inheritedMethod the inherited method
 * @return true if currentMethod's return type is strictly incompatible with
 *         inheritedMethod's
 */
boolean reportIncompatibleReturnTypeError(MethodBinding currentMethod, MethodBinding inheritedMethod) {
	problemReporter(currentMethod).incompatibleReturnType(currentMethod, inheritedMethod);
	return true;
}

ReferenceBinding[] resolvedExceptionTypesFor(MethodBinding method) {
	ReferenceBinding[] exceptions = method.thrownExceptions;
	if ((method.modifiers & ExtraCompilerModifiers.AccUnresolved) == 0)
		return exceptions;

	if (!(method.declaringClass instanceof BinaryTypeBinding))
		return Binding.NO_EXCEPTIONS; // safety check

	for (int i = exceptions.length; --i >= 0;)
		exceptions[i] = (ReferenceBinding) BinaryTypeBinding.resolveType(exceptions[i], this.environment, true /* raw conversion */);
	return exceptions;
}

void verify() {
	computeMethods();
	computeInheritedMethods();
	checkMethods();
	if (this.type.isClass())
		checkForMissingHashCodeMethod();
}

void verify(SourceTypeBinding someType) {
	if (this.type == null) {
		try {
			this.type = someType;
			verify();
		} finally {
			this.type = null;
		}
	} else {
		this.environment.newMethodVerifier().verify(someType);
	}
}

@Override
public String toString() {
	StringBuilder buffer = new StringBuilder(10);
	buffer.append("MethodVerifier for type: "); //$NON-NLS-1$
	buffer.append(this.type.readableName());
	buffer.append('\n');
	buffer.append("\t-inherited methods: "); //$NON-NLS-1$
	buffer.append(this.inheritedMethods);
	return buffer.toString();
}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy