All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.jdt.internal.compiler.util.FloatUtil Maven / Gradle / Ivy

/*******************************************************************************
 * Copyright (c) 2004, 2011 IBM Corporation and others.
 *
 * This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License 2.0
 * which accompanies this distribution, and is available at
 * https://www.eclipse.org/legal/epl-2.0/
 *
 * SPDX-License-Identifier: EPL-2.0
 *
 * Contributors:
 *     IBM Corporation - initial API and implementation
 *******************************************************************************/
package org.eclipse.jdt.internal.compiler.util;

/**
 * Internal utility for declaring with hexadecimal double and float literals.
 *
 * @since 3.1
 */
public class FloatUtil {

	private static final int DOUBLE_FRACTION_WIDTH = 52;

	private static final int DOUBLE_PRECISION = 53;

	private static final int MAX_DOUBLE_EXPONENT = +1023;

	private static final int MIN_NORMALIZED_DOUBLE_EXPONENT = -1022;

	private static final int MIN_UNNORMALIZED_DOUBLE_EXPONENT = MIN_NORMALIZED_DOUBLE_EXPONENT
			- DOUBLE_PRECISION;

	private static final int DOUBLE_EXPONENT_BIAS = +1023;

	private static final int DOUBLE_EXPONENT_SHIFT = 52;

	private static final int SINGLE_FRACTION_WIDTH = 23;

	private static final int SINGLE_PRECISION = 24;

	private static final int MAX_SINGLE_EXPONENT = +127;

	private static final int MIN_NORMALIZED_SINGLE_EXPONENT = -126;

	private static final int MIN_UNNORMALIZED_SINGLE_EXPONENT = MIN_NORMALIZED_SINGLE_EXPONENT
			- SINGLE_PRECISION;

	private static final int SINGLE_EXPONENT_BIAS = +127;

	private static final int SINGLE_EXPONENT_SHIFT = 23;

	/**
	 * Returns the float value corresponding to the given
	 * hexadecimal floating-point single precision literal.
	 * The literal must be syntactically correct, and must be
	 * a float literal (end in a 'f' or 'F'). It must not
	 * include either leading or trailing whitespace or
	 * a sign.
	 * 

* This method returns the same answer as * Float.parseFloat(new String(source)) does in JDK 1.5, * except that this method returns Floal.NaN if it * would underflow to 0 (parseFloat just returns 0). * The method handles all the tricky cases, including * fraction rounding to 24 bits and gradual underflow. *

* * @param source source string containing single precision * hexadecimal floating-point literal * @return the float value, including Float.POSITIVE_INFINITY * if the non-zero value is too large to be represented, and * Float.NaN if the non-zero value is too small to be represented */ public static float valueOfHexFloatLiteral(char[] source) { long bits = convertHexFloatingPointLiteralToBits(source); return Float.intBitsToFloat((int) bits); } /** * Returns the double value corresponding to the given * hexadecimal floating-point double precision literal. * The literal must be syntactially correct, and must be * a double literal (end in an optional 'd' or 'D'). * It must not include either leading or trailing whitespace or * a sign. *

* This method returns the same answer as * Double.parseDouble(new String(source)) does in JDK 1.5, * except that this method throw NumberFormatException in * the case of overflow to infinity or underflow to 0. * The method handles all the tricky cases, including * fraction rounding to 53 bits and gradual underflow. *

* * @param source source string containing double precision * hexadecimal floating-point literal * @return the double value, including Double.POSITIVE_INFINITY * if the non-zero value is too large to be represented, and * Double.NaN if the non-zero value is too small to be represented */ public static double valueOfHexDoubleLiteral(char[] source) { long bits = convertHexFloatingPointLiteralToBits(source); return Double.longBitsToDouble(bits); } /** * Returns the given hexadecimal floating-point literal as * the bits for a single-precision (float) or a * double-precision (double) IEEE floating point number. * The literal must be syntactically correct. It must not * include either leading or trailing whitespace or a sign. * * @param source source string containing hexadecimal floating-point literal * @return for double precision literals, bits suitable * for passing to Double.longBitsToDouble; for single precision literals, * bits suitable for passing to Single.intBitsToDouble in the bottom * 32 bits of the result * @throws NumberFormatException if the number cannot be parsed */ private static long convertHexFloatingPointLiteralToBits(char[] source) { int length = source.length; long mantissa = 0; // Step 1: process the '0x' lead-in int next = 0; char nextChar = source[next]; nextChar = source[next]; if (nextChar == '0') { next++; } else { throw new NumberFormatException(); } nextChar = source[next]; if (nextChar == 'X' || nextChar == 'x') { next++; } else { throw new NumberFormatException(); } // Step 2: process leading '0's either before or after the '.' int binaryPointPosition = -1; loop: while (true) { nextChar = source[next]; switch (nextChar) { case '0': next++; continue loop; case '.': binaryPointPosition = next; next++; continue loop; default: break loop; } } // Step 3: process the mantissa // leading zeros have been trimmed int mantissaBits = 0; int leadingDigitPosition = -1; loop: while (true) { nextChar = source[next]; int hexdigit; switch (nextChar) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': hexdigit = nextChar - '0'; break; case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': hexdigit = (nextChar - 'a') + 10; break; case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': hexdigit = (nextChar - 'A') + 10; break; case '.': binaryPointPosition = next; next++; continue loop; default: if (binaryPointPosition < 0) { // record virtual '.' as being to right of all digits binaryPointPosition = next; } break loop; } if (mantissaBits == 0) { // this is the first non-zero hex digit // ignore leading binary 0's in hex digit leadingDigitPosition = next; mantissa = hexdigit; mantissaBits = 4; } else if (mantissaBits < 60) { // middle hex digits mantissa <<= 4; mantissa |= hexdigit; mantissaBits += 4; } else { // more mantissa bits than we can handle // drop this hex digit on the ground } next++; continue loop; } // Step 4: process the 'P' nextChar = source[next]; if (nextChar == 'P' || nextChar == 'p') { next++; } else { throw new NumberFormatException(); } // Step 5: process the exponent int exponent = 0; int exponentSign = +1; loop: while (next < length) { nextChar = source[next]; switch (nextChar) { case '+': exponentSign = +1; next++; continue loop; case '-': exponentSign = -1; next++; continue loop; case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': int digit = nextChar - '0'; exponent = (exponent * 10) + digit; next++; continue loop; default: break loop; } } // Step 6: process the optional 'f' or 'd' boolean doublePrecision = true; if (next < length) { nextChar = source[next]; switch (nextChar) { case 'f': case 'F': doublePrecision = false; next++; break; case 'd': case 'D': doublePrecision = true; next++; break; default: throw new NumberFormatException(); } } // at this point, all the parsing is done // Step 7: handle mantissa of zero if (mantissa == 0) { return 0L; } // Step 8: normalize non-zero mantissa // mantissa is in right-hand mantissaBits // ensure that top bit (as opposed to hex digit) is 1 int scaleFactorCompensation = 0; long top = (mantissa >>> (mantissaBits - 4)); if ((top & 0x8) == 0) { mantissaBits--; scaleFactorCompensation++; if ((top & 0x4) == 0) { mantissaBits--; scaleFactorCompensation++; if ((top & 0x2) == 0) { mantissaBits--; scaleFactorCompensation++; } } } // Step 9: convert double literals to IEEE double long result = 0L; if (doublePrecision) { long fraction; if (mantissaBits > DOUBLE_PRECISION) { // more bits than we can keep int extraBits = mantissaBits - DOUBLE_PRECISION; // round to DOUBLE_PRECISION bits fraction = mantissa >>> (extraBits - 1); long lowBit = fraction & 0x1; fraction += lowBit; fraction = fraction >>> 1; if ((fraction & (1L << DOUBLE_PRECISION)) != 0) { fraction = fraction >>> 1; scaleFactorCompensation -= 1; } } else { // less bits than the faction can hold - pad on right with 0s fraction = mantissa << (DOUBLE_PRECISION - mantissaBits); } int scaleFactor = 0; // how many bits to move '.' to before leading hex digit if (mantissaBits > 0) { if (leadingDigitPosition < binaryPointPosition) { // e.g., 0x80.0p0 has scaleFactor == +8 scaleFactor = 4 * (binaryPointPosition - leadingDigitPosition); // e.g., 0x10.0p0 has scaleFactorCompensation == +3 scaleFactor -= scaleFactorCompensation; } else { // e.g., 0x0.08p0 has scaleFactor == -4 scaleFactor = -4 * (leadingDigitPosition - binaryPointPosition - 1); // e.g., 0x0.01p0 has scaleFactorCompensation == +3 scaleFactor -= scaleFactorCompensation; } } int e = (exponentSign * exponent) + scaleFactor; if (e - 1 > MAX_DOUBLE_EXPONENT) { // overflow to +infinity result = Double.doubleToLongBits(Double.POSITIVE_INFINITY); } else if (e - 1 >= MIN_NORMALIZED_DOUBLE_EXPONENT) { // can be represented as a normalized double // the left most bit must be discarded (it's always a 1) long biasedExponent = e - 1 + DOUBLE_EXPONENT_BIAS; result = fraction & ~(1L << DOUBLE_FRACTION_WIDTH); result |= (biasedExponent << DOUBLE_EXPONENT_SHIFT); } else if (e - 1 > MIN_UNNORMALIZED_DOUBLE_EXPONENT) { // can be represented as an unnormalized double long biasedExponent = 0; result = fraction >>> (MIN_NORMALIZED_DOUBLE_EXPONENT - e + 1); result |= (biasedExponent << DOUBLE_EXPONENT_SHIFT); } else { // underflow - return Double.NaN result = Double.doubleToLongBits(Double.NaN); } return result; } // Step 10: convert float literals to IEEE single long fraction; if (mantissaBits > SINGLE_PRECISION) { // more bits than we can keep int extraBits = mantissaBits - SINGLE_PRECISION; // round to DOUBLE_PRECISION bits fraction = mantissa >>> (extraBits - 1); long lowBit = fraction & 0x1; fraction += lowBit; fraction = fraction >>> 1; if ((fraction & (1L << SINGLE_PRECISION)) != 0) { fraction = fraction >>> 1; scaleFactorCompensation -= 1; } } else { // less bits than the faction can hold - pad on right with 0s fraction = mantissa << (SINGLE_PRECISION - mantissaBits); } int scaleFactor = 0; // how many bits to move '.' to before leading hex digit if (mantissaBits > 0) { if (leadingDigitPosition < binaryPointPosition) { // e.g., 0x80.0p0 has scaleFactor == +8 scaleFactor = 4 * (binaryPointPosition - leadingDigitPosition); // e.g., 0x10.0p0 has scaleFactorCompensation == +3 scaleFactor -= scaleFactorCompensation; } else { // e.g., 0x0.08p0 has scaleFactor == -4 scaleFactor = -4 * (leadingDigitPosition - binaryPointPosition - 1); // e.g., 0x0.01p0 has scaleFactorCompensation == +3 scaleFactor -= scaleFactorCompensation; } } int e = (exponentSign * exponent) + scaleFactor; if (e - 1 > MAX_SINGLE_EXPONENT) { // overflow to +infinity result = Float.floatToIntBits(Float.POSITIVE_INFINITY); } else if (e - 1 >= MIN_NORMALIZED_SINGLE_EXPONENT) { // can be represented as a normalized single // the left most bit must be discarded (it's always a 1) long biasedExponent = e - 1 + SINGLE_EXPONENT_BIAS; result = fraction & ~(1L << SINGLE_FRACTION_WIDTH); result |= (biasedExponent << SINGLE_EXPONENT_SHIFT); } else if (e - 1 > MIN_UNNORMALIZED_SINGLE_EXPONENT) { // can be represented as an unnormalized single long biasedExponent = 0; result = fraction >>> (MIN_NORMALIZED_SINGLE_EXPONENT - e + 1); result |= (biasedExponent << SINGLE_EXPONENT_SHIFT); } else { // underflow - return Float.NaN result = Float.floatToIntBits(Float.NaN); } return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy