All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.jetty.util.security.UnixCrypt Maven / Gradle / Ivy

There is a newer version: 12.1.0.alpha0
Show newest version
/*
 * @(#)UnixCrypt.java 0.9 96/11/25
 *
 * Copyright (c) 1996 Aki Yoshida. All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software
 * for non-commercial or commercial purposes and without fee is
 * hereby granted provided that this copyright notice appears in
 * all copies.
 */

/*
 * Unix crypt(3C) utility
 *
 * @version 0.9, 11/25/96
 * @author Aki Yoshida
 *
 * modified April 2001
 * by Iris Van den Broeke, Daniel Deville
 *
 * modified April 2001
 * by Iris Van den Broeke, Daniel Deville
 *
 * modified April 2001
 * by Iris Van den Broeke, Daniel Deville
 *
 * modified April 2001
 * by Iris Van den Broeke, Daniel Deville
 */

package org.eclipse.jetty.util.security;

import java.nio.charset.StandardCharsets;

/**
 * Unix Crypt. Implements the one way cryptography used by Unix systems for
 * simple password protection.
 */
public class UnixCrypt
{
    // @checkstyle-disable-check : MethodNameCheck
    // @checkstyle-disable-check : ParameterNameCheck
    // @checkstyle-disable-check : LocalVariableNameCheck
    // @checkstyle-disable-check : OperatorWrapCheck

    /* (mostly) Standard DES Tables from Tom Truscott */
    private static final byte[] IP = {
        /* initial permutation */
        58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4, 62, 54, 46, 38, 30, 22, 14,
        6, 64, 56, 48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9, 1,
        59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15,
        7
    };

    /* The final permutation is the inverse of IP - no table is necessary */
    private static final byte[] ExpandTr = {
        /* expansion operation */
        32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
        16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29,
        28, 29, 30, 31, 32, 1
    };

    private static final byte[] PC1 = {
        /* permuted choice table 1 */
        57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18, 10, 2, 59, 51, 43, 35, 27, 19, 11,
        3, 60, 52, 44, 36,

        63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22, 14, 6, 61, 53, 45, 37, 29, 21,
        13, 5, 28, 20, 12, 4
    };

    private static final byte[] Rotates = {
        /* PC1 rotation schedule */
        1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
    };

    private static final byte[] PC2 = {
        /* permuted choice table 2 */
        9, 18, 14, 17, 11, 24, 1, 5, 22, 25, 3, 28, 15, 6, 21, 10, 35, 38, 23, 19, 12, 4, 26, 8,
        43, 54, 16, 7, 27, 20, 13, 2,

        0, 0, 41, 52, 31, 37, 47, 55, 0, 0, 30, 40, 51, 45, 33, 48, 0, 0, 44, 49, 39, 56, 34,
        53, 0, 0, 46, 42, 50, 36, 29, 32
    };

    private static final byte[][] S = {
        /* 48->32 bit substitution tables */
        /* S[1] */
        {
            14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7, 0, 15, 7, 4, 14, 2, 13, 1, 10,
            6, 12, 11, 9, 5, 3, 8, 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9,
            7, 3, 10, 5, 0, 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
        },
        /* S[2] */
        {
            15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10, 3, 13, 4, 7, 15, 2, 8, 14, 12,
            0, 1, 10, 6, 9, 11, 5, 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12,
            6, 9, 3, 2, 15, 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
        },
        /* S[3] */
        {
            10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8, 13, 7, 0, 9, 3, 4, 6, 10, 2,
            8, 5, 14, 12, 11, 15, 1, 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2,
            12, 5, 10, 14, 7, 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
        },
        /* S[4] */
        {
            7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15, 13, 8, 11, 5, 6, 15, 0, 3, 4,
            7, 2, 12, 1, 10, 14, 9, 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3,
            14, 5, 2, 8, 4, 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
        },
        /* S[5] */
        {
            2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9, 14, 11, 2, 12, 4, 7, 13, 1, 5,
            0, 15, 10, 3, 9, 8, 6, 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12,
            5, 6, 3, 0, 14, 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
        },
        /* S[6] */
        {
            12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11, 10, 15, 4, 2, 7, 12, 9, 5, 6,
            1, 13, 14, 0, 11, 3, 8, 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4,
            10, 1, 13, 11, 6, 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
        },
        /* S[7] */
        {
            4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1, 13, 0, 11, 7, 4, 9, 1, 10, 14,
            3, 5, 12, 2, 15, 8, 6, 1, 4, 11, 13, 12, 3, 7, 14, 10, 15,
            6, 8, 0, 5, 9, 2, 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
        },
        /* S[8] */
        {
            13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7, 1, 15, 13, 8, 10, 3, 7, 4, 12,
            5, 6, 11, 0, 14, 9, 2, 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10,
            13, 15, 3, 5, 8, 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
        }
    };

    private static final byte[] P32Tr = {
        /* 32-bit permutation function */
        16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3,
        9, 19, 13, 30, 6, 22, 11, 4, 25
    };

    private static final byte[] CIFP = {
        /* compressed/interleaved
         * permutation
         */
        1, 2, 3, 4, 17, 18, 19, 20, 5, 6, 7, 8, 21, 22, 23, 24, 9, 10, 11, 12, 25, 26, 27, 28,
        13, 14, 15, 16, 29, 30, 31, 32,

        33, 34, 35, 36, 49, 50, 51, 52, 37, 38, 39, 40, 53, 54, 55, 56, 41, 42, 43, 44, 57, 58,
        59, 60, 45, 46, 47, 48, 61, 62, 63, 64
    };

    private static final byte[] ITOA64 = {
        /* 0..63 => ascii-64 */
        (byte)'.', (byte)'/', (byte)'0', (byte)'1', (byte)'2', (byte)'3', (byte)'4',
        (byte)'5', (byte)'6', (byte)'7', (byte)'8', (byte)'9', (byte)'A',
        (byte)'B', (byte)'C', (byte)'D', (byte)'E', (byte)'F', (byte)'G', (byte)'H',
        (byte)'I', (byte)'J', (byte)'K', (byte)'L', (byte)'M',
        (byte)'N', (byte)'O', (byte)'P', (byte)'Q', (byte)'R', (byte)'S', (byte)'T',
        (byte)'U', (byte)'V', (byte)'W', (byte)'X', (byte)'Y',
        (byte)'Z', (byte)'a', (byte)'b', (byte)'c', (byte)'d', (byte)'e', (byte)'f',
        (byte)'g', (byte)'h', (byte)'i', (byte)'j', (byte)'k',
        (byte)'l', (byte)'m', (byte)'n', (byte)'o', (byte)'p', (byte)'q', (byte)'r',
        (byte)'s', (byte)'t', (byte)'u', (byte)'v', (byte)'w',
        (byte)'x', (byte)'y', (byte)'z'
    };

    /* ===== Tables that are initialized at run time ==================== */

    private static final byte[] A64TOI = new byte[128]; /* ascii-64 => 0..63 */

    /* Initial key schedule permutation */
    private static final long[][] PC1ROT = new long[16][16];

    /* Subsequent key schedule rotation permutations */
    private static final long[][][] PC2ROT = new long[2][16][16];

    /* Initial permutation/expansion table */
    private static final long[][] IE3264 = new long[8][16];

    /* Table that combines the S, P, and E operations. */
    private static final long[][] SPE = new long[8][64];

    /* compressed/interleaved => final permutation table */
    private static final long[][] CF6464 = new long[16][16];

    static
    {
        byte[] perm = new byte[64];
        byte[] temp = new byte[64];

        // inverse table.
        for (int i = 0; i < 64; i++)
        {
            A64TOI[ITOA64[i]] = (byte)i;
        }

        // PC1ROT - bit reverse, then PC1, then Rotate, then PC2
        for (int i = 0; i < 64; i++)
        {
            perm[i] = (byte)0;
        }

        for (int i = 0; i < 64; i++)
        {
            int k;
            if ((k = PC2[i]) == 0)
                continue;
            k += Rotates[0] - 1;
            if ((k % 28) < Rotates[0])
                k -= 28;
            k = PC1[k];
            if (k > 0)
            {
                k--;
                k = (k | 0x07) - (k & 0x07);
                k++;
            }
            perm[i] = (byte)k;
        }
        init_perm(PC1ROT, perm, 8);

        // PC2ROT - PC2 inverse, then Rotate, then PC2
        for (int j = 0; j < 2; j++)
        {
            int k;
            for (int i = 0; i < 64; i++)
            {
                perm[i] = temp[i] = 0;
            }
            for (int i = 0; i < 64; i++)
            {
                if ((k = PC2[i]) == 0)
                    continue;
                temp[k - 1] = (byte)(i + 1);
            }
            for (int i = 0; i < 64; i++)
            {
                if ((k = PC2[i]) == 0)
                    continue;
                k += j;
                if ((k % 28) <= j)
                    k -= 28;
                perm[i] = temp[k];
            }

            init_perm(PC2ROT[j], perm, 8);
        }

        // Bit reverse, initial permupation, expantion
        for (int i = 0; i < 8; i++)
        {
            for (int j = 0; j < 8; j++)
            {
                int k = (j < 2) ? 0 : IP[ExpandTr[i * 6 + j - 2] - 1];
                if (k > 32)
                    k -= 32;
                else if (k > 0)
                    k--;
                if (k > 0)
                {
                    k--;
                    k = (k | 0x07) - (k & 0x07);
                    k++;
                }
                perm[i * 8 + j] = (byte)k;
            }
        }

        init_perm(IE3264, perm, 8);

        // Compression, final permutation, bit reverse
        for (int i = 0; i < 64; i++)
        {
            int k = IP[CIFP[i] - 1];
            if (k > 0)
            {
                k--;
                k = (k | 0x07) - (k & 0x07);
                k++;
            }
            perm[k - 1] = (byte)(i + 1);
        }

        init_perm(CF6464, perm, 8);

        // SPE table
        for (int i = 0; i < 48; i++)
        {
            perm[i] = P32Tr[ExpandTr[i] - 1];
        }
        for (int t = 0; t < 8; t++)
        {
            for (int j = 0; j < 64; j++)
            {
                int k = (((j >> 0) & 0x01) << 5) | (((j >> 1) & 0x01) << 3) |
                    (((j >> 2) & 0x01) << 2) |
                    (((j >> 3) & 0x01) << 1) |
                    (((j >> 4) & 0x01) << 0) |
                    (((j >> 5) & 0x01) << 4);
                k = S[t][k];
                k = (((k >> 3) & 0x01) << 0) | (((k >> 2) & 0x01) << 1) | (((k >> 1) & 0x01) << 2) | (((k >> 0) & 0x01) << 3);
                for (int i = 0; i < 32; i++)
                {
                    temp[i] = 0;
                }
                for (int i = 0; i < 4; i++)
                {
                    temp[4 * t + i] = (byte)((k >> i) & 0x01);
                }
                long kk = 0;
                for (int i = 24; --i >= 0; )
                {
                    kk = ((kk << 1) | ((long)temp[perm[i] - 1]) << 32 | (temp[perm[i + 24] - 1]));
                }

                SPE[t][j] = to_six_bit(kk);
            }
        }
    }

    /**
     * You can't call the constructer.
     */
    private UnixCrypt()
    {
    }

    /**
     * Returns the transposed and split code of a 24-bit code into a 4-byte
     * code, each having 6 bits.
     */
    private static int to_six_bit(int num)
    {
        return (((num << 26) & 0xfc000000) | ((num << 12) & 0xfc0000) | ((num >> 2) & 0xfc00) | ((num >> 16) & 0xfc));
    }

    /**
     * Returns the transposed and split code of two 24-bit code into two 4-byte
     * code, each having 6 bits.
     */
    private static long to_six_bit(long num)
    {
        return (((num << 26) & 0xfc000000fc000000L) | ((num << 12) & 0xfc000000fc0000L) | ((num >> 2) & 0xfc000000fc00L) | ((num >> 16) & 0xfc000000fcL));
    }

    /**
     * Returns the permutation of the given 64-bit code with the specified
     * permutataion table.
     */
    private static long perm6464(long c, long[][] p)
    {
        long out = 0L;
        for (int i = 8; --i >= 0; )
        {
            int t = (int)(0x00ff & c);
            c >>= 8;
            long tp = p[i << 1][t & 0x0f];
            out |= tp;
            tp = p[(i << 1) + 1][t >> 4];
            out |= tp;
        }
        return out;
    }

    /**
     * Returns the permutation of the given 32-bit code with the specified
     * permutataion table.
     */
    private static long perm3264(int c, long[][] p)
    {
        long out = 0L;
        for (int i = 4; --i >= 0; )
        {
            int t = (0x00ff & c);
            c >>= 8;
            long tp = p[i << 1][t & 0x0f];
            out |= tp;
            tp = p[(i << 1) + 1][t >> 4];
            out |= tp;
        }
        return out;
    }

    /**
     * Returns the key schedule for the given key.
     */
    private static long[] des_setkey(long keyword)
    {
        long K = perm6464(keyword, PC1ROT);
        long[] KS = new long[16];
        KS[0] = K & ~0x0303030300000000L;

        for (int i = 1; i < 16; i++)
        {
            KS[i] = K;
            K = perm6464(K, PC2ROT[Rotates[i] - 1]);

            KS[i] = K & ~0x0303030300000000L;
        }
        return KS;
    }

    /**
     * Returns the DES encrypted code of the given word with the specified
     * environment.
     */
    private static long des_cipher(long in, int salt, int num_iter, long[] KS)
    {
        salt = to_six_bit(salt);
        long L = in;
        long R = L;
        L &= 0x5555555555555555L;
        R = (R & 0xaaaaaaaa00000000L) | ((R >> 1) & 0x0000000055555555L);
        L = ((((L << 1) | (L << 32)) & 0xffffffff00000000L) | ((R | (R >> 32)) & 0x00000000ffffffffL));

        L = perm3264((int)(L >> 32), IE3264);
        R = perm3264((int)(L & 0xffffffff), IE3264);

        while (--num_iter >= 0)
        {
            for (int loop_count = 0; loop_count < 8; loop_count++)
            {
                long kp = KS[(loop_count << 1)];
                long k = ((R >> 32) ^ R) & salt & 0xffffffffL;
                k |= (k << 32);
                long B = (k ^ R ^ kp);

                L ^= (SPE[0][(int)((B >> 58) & 0x3f)] ^ SPE[1][(int)((B >> 50) & 0x3f)]
                    ^ SPE[2][(int)((B >> 42) & 0x3f)]
                    ^ SPE[3][(int)((B >> 34) & 0x3f)]
                    ^ SPE[4][(int)((B >> 26) & 0x3f)]
                    ^ SPE[5][(int)((B >> 18) & 0x3f)]
                    ^ SPE[6][(int)((B >> 10) & 0x3f)] ^ SPE[7][(int)((B >> 2) & 0x3f)]);

                kp = KS[(loop_count << 1) + 1];
                k = ((L >> 32) ^ L) & salt & 0xffffffffL;
                k |= (k << 32);
                B = (k ^ L ^ kp);

                R ^= (SPE[0][(int)((B >> 58) & 0x3f)] ^ SPE[1][(int)((B >> 50) & 0x3f)]
                    ^ SPE[2][(int)((B >> 42) & 0x3f)]
                    ^ SPE[3][(int)((B >> 34) & 0x3f)]
                    ^ SPE[4][(int)((B >> 26) & 0x3f)]
                    ^ SPE[5][(int)((B >> 18) & 0x3f)]
                    ^ SPE[6][(int)((B >> 10) & 0x3f)] ^ SPE[7][(int)((B >> 2) & 0x3f)]);
            }
            // swap L and R
            L ^= R;
            R ^= L;
            L ^= R;
        }
        L = ((((L >> 35) & 0x0f0f0f0fL) | (((L & 0xffffffff) << 1) & 0xf0f0f0f0L)) << 32 | (((R >> 35) & 0x0f0f0f0fL) | (((R & 0xffffffff) << 1) & 0xf0f0f0f0L)));

        L = perm6464(L, CF6464);

        return L;
    }

    /**
     * Initializes the given permutation table with the mapping table.
     */
    private static void init_perm(long[][] perm, byte[] p, int chars_out)
    {
        for (int k = 0; k < chars_out * 8; k++)
        {

            int l = p[k] - 1;
            if (l < 0)
                continue;
            int i = l >> 2;
            l = 1 << (l & 0x03);
            for (int j = 0; j < 16; j++)
            {
                int s = ((k & 0x07) + ((7 - (k >> 3)) << 3));
                if ((j & l) != 0x00)
                    perm[i][j] |= (1L << s);
            }
        }
    }

    /**
     * Encrypts String into crypt (Unix) code.
     *
     * @param key the key to be encrypted
     * @param setting the salt to be used
     * @return the encrypted String
     */
    public static String crypt(String key, String setting)
    {
        long keyword = 0L;
        /* invalid parameters! */
        if (key == null || setting == null)
            return "*"; // will NOT match under
        // ANY circumstances!

        int keylen = key.length();

        for (int i = 0; i < 8; i++)
        {
            keyword = (keyword << 8) | ((i < keylen) ? 2 * key.charAt(i) : 0);
        }

        long[] KS = des_setkey(keyword);

        int salt = 0;
        /* encrypted result */
        byte[] cryptresult = new byte[13];
        for (int i = 2; --i >= 0; )
        {
            char c = (i < setting.length()) ? setting.charAt(i) : '.';
            cryptresult[i] = (byte)c;
            salt = (salt << 6) | (0x00ff & A64TOI[c]);
        }

        /* encryption constant */
        long rsltblock = des_cipher(0L, salt, 25, KS);

        cryptresult[12] = ITOA64[(((int)rsltblock) << 2) & 0x3f];
        rsltblock >>= 4;
        for (int i = 12; --i >= 2; )
        {
            cryptresult[i] = ITOA64[((int)rsltblock) & 0x3f];
            rsltblock >>= 6;
        }

        return new String(cryptresult, 0, 13, StandardCharsets.US_ASCII);
    }

    public static void main(String[] arg)
    {
        if (arg.length != 2)
        {
            System.err.println("Usage - java org.eclipse.util.UnixCrypt  ");
            System.exit(1);
        }

        System.err.println("Crypt=" + crypt(arg[0], arg[1]));
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy