org.eclipse.jetty.util.thread.strategy.ExecuteProduceConsume Maven / Gradle / Ivy
Show all versions of jetty-util Show documentation
//
// ========================================================================
// Copyright (c) 1995-2017 Mort Bay Consulting Pty. Ltd.
// ------------------------------------------------------------------------
// All rights reserved. This program and the accompanying materials
// are made available under the terms of the Eclipse Public License v1.0
// and Apache License v2.0 which accompanies this distribution.
//
// The Eclipse Public License is available at
// http://www.eclipse.org/legal/epl-v10.html
//
// The Apache License v2.0 is available at
// http://www.opensource.org/licenses/apache2.0.php
//
// You may elect to redistribute this code under either of these licenses.
// ========================================================================
//
package org.eclipse.jetty.util.thread.strategy;
import java.io.Closeable;
import java.util.concurrent.Executor;
import org.eclipse.jetty.util.log.Log;
import org.eclipse.jetty.util.log.Logger;
import org.eclipse.jetty.util.thread.ExecutionStrategy;
import org.eclipse.jetty.util.thread.Locker;
import org.eclipse.jetty.util.thread.Locker.Lock;
import org.eclipse.jetty.util.thread.ThreadPool;
/**
* A strategy where the thread that produces will always run the resulting task.
* The strategy may then dispatch another thread to continue production.
* The strategy is also known by the nickname 'eat what you kill', which comes from
* the hunting ethic that says a person should not kill anything he or she does not
* plan on eating. In this case, the phrase is used to mean that a thread should
* not produce a task that it does not intend to run. By making producers run the
* task that they have just produced avoids execution delays and avoids parallel slow
* down by running the task in the same core, with good chances of having a hot CPU
* cache. It also avoids the creation of a queue of produced tasks that the system
* does not yet have capacity to consume, which can save memory and exert back
* pressure on producers.
*/
public class ExecuteProduceConsume extends ExecutingExecutionStrategy implements ExecutionStrategy, Runnable
{
private static final Logger LOG = Log.getLogger(ExecuteProduceConsume.class);
private final Locker _locker = new Locker();
private final Runnable _runExecute = new RunExecute();
private final Producer _producer;
private final ThreadPool _threadPool;
private boolean _idle = true;
private boolean _execute;
private boolean _producing;
private boolean _pending;
private boolean _lowThreads;
public ExecuteProduceConsume(Producer producer, Executor executor)
{
super(executor);
this._producer = producer;
_threadPool = executor instanceof ThreadPool ? (ThreadPool)executor : null;
}
@Deprecated
public ExecuteProduceConsume(Producer producer, Executor executor, ExecutionStrategy lowResourceStrategy)
{
this(producer, executor);
}
@Override
public void execute()
{
if (LOG.isDebugEnabled())
LOG.debug("{} execute", this);
boolean produce = false;
try (Lock locked = _locker.lock())
{
// If we are idle and a thread is not producing
if (_idle)
{
if (_producing)
throw new IllegalStateException();
// Then this thread will do the producing
produce = _producing = true;
// and we are no longer idle
_idle = false;
}
else
{
// Otherwise, lets tell the producing thread
// that it should call produce again before going idle
_execute = true;
}
}
if (produce)
produceConsume();
}
@Override
public void dispatch()
{
if (LOG.isDebugEnabled())
LOG.debug("{} spawning", this);
boolean dispatch = false;
try (Lock locked = _locker.lock())
{
if (_idle)
dispatch = true;
else
_execute = true;
}
if (dispatch)
execute(_runExecute);
}
@Override
public void run()
{
if (LOG.isDebugEnabled())
LOG.debug("{} run", this);
boolean produce = false;
try (Lock locked = _locker.lock())
{
_pending = false;
if (!_idle && !_producing)
{
produce = _producing = true;
}
}
if (produce)
produceConsume();
}
private void produceConsume()
{
if (_threadPool != null && _threadPool.isLowOnThreads())
{
// If we are low on threads we must not produce and consume
// in the same thread, but produce and execute to consume.
if (!produceExecuteConsume())
return;
}
executeProduceConsume();
}
public boolean isLowOnThreads()
{
return _lowThreads;
}
/**
* @return true if we are still producing
*/
private boolean produceExecuteConsume()
{
if (LOG.isDebugEnabled())
LOG.debug("{} enter low threads mode", this);
_lowThreads = true;
try
{
boolean idle = false;
while (_threadPool.isLowOnThreads())
{
Runnable task = _producer.produce();
if (LOG.isDebugEnabled())
LOG.debug("{} produced {}", _producer, task);
if (task == null)
{
// No task, so we are now idle
try (Lock locked = _locker.lock())
{
if (_execute)
{
_execute = false;
_producing = true;
_idle = false;
continue;
}
_producing = false;
idle = _idle = true;
break;
}
}
// Execute the task.
executeProduct(task);
}
return !idle;
}
finally
{
_lowThreads = false;
if (LOG.isDebugEnabled())
LOG.debug("{} exit low threads mode", this);
}
}
/**
* Only called when in {@link #isLowOnThreads() low threads mode}
* to execute the task produced by the producer.
* Because
* If the task implements {@link Rejectable}, then {@link Rejectable#reject()}
* is immediately called on the task object. If the task also implements
* {@link Closeable}, then {@link Closeable#close()} is called on the task object.
* If the task does not implement {@link Rejectable}, then it is
* {@link #execute(Runnable) executed}.
*
* @param task the produced task to execute
*/
protected void executeProduct(Runnable task)
{
if (task instanceof Rejectable)
{
try
{
((Rejectable)task).reject();
if (task instanceof Closeable)
((Closeable)task).close();
}
catch (Throwable x)
{
LOG.debug(x);
}
}
else
{
execute(task);
}
}
private void executeProduceConsume()
{
if (LOG.isDebugEnabled())
LOG.debug("{} produce enter", this);
while (true)
{
// If we got here, then we are the thread that is producing.
if (LOG.isDebugEnabled())
LOG.debug("{} producing", this);
Runnable task = _producer.produce();
if (LOG.isDebugEnabled())
LOG.debug("{} produced {}", this, task);
boolean dispatch = false;
try (Lock locked = _locker.lock())
{
// Finished producing
_producing = false;
// Did we produced a task?
if (task == null)
{
// There is no task.
// Could another one just have been queued with an execute?
if (_execute)
{
_idle = false;
_producing = true;
_execute = false;
continue;
}
// ... and no additional calls to execute, so we are idle
_idle = true;
break;
}
// We have a task, which we will run ourselves,
// so if we don't have another thread pending
if (!_pending)
{
// dispatch one
dispatch = _pending = true;
}
_execute = false;
}
// If we became pending
if (dispatch)
{
// Spawn a new thread to continue production by running the produce loop.
if (LOG.isDebugEnabled())
LOG.debug("{} dispatch", this);
if (!execute(this))
task = null;
}
// Run the task.
if (LOG.isDebugEnabled())
LOG.debug("{} run {}", this, task);
if (task != null)
task.run();
if (LOG.isDebugEnabled())
LOG.debug("{} ran {}", this, task);
// Once we have run the task, we can try producing again.
try (Lock locked = _locker.lock())
{
// Is another thread already producing or we are now idle?
if (_producing || _idle)
break;
_producing = true;
}
}
if (LOG.isDebugEnabled())
LOG.debug("{} produce exit", this);
}
public Boolean isIdle()
{
try (Lock locked = _locker.lock())
{
return _idle;
}
}
public String toString()
{
StringBuilder builder = new StringBuilder();
builder.append("EPC ");
try (Lock locked = _locker.lock())
{
builder.append(_idle ? "Idle/" : "");
builder.append(_producing ? "Prod/" : "");
builder.append(_pending ? "Pend/" : "");
builder.append(_execute ? "Exec/" : "");
}
builder.append(_producer);
return builder.toString();
}
private class RunExecute implements Runnable
{
@Override
public void run()
{
execute();
}
}
public static class Factory implements ExecutionStrategy.Factory
{
@Override
public ExecutionStrategy newExecutionStrategy(Producer producer, Executor executor)
{
return new ExecuteProduceConsume(producer, executor);
}
}
}