All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.persistence.internal.helper.WriteLockManager Maven / Gradle / Ivy

There is a newer version: 5.0.0-B03
Show newest version
/*
 * Copyright (c) 1998, 2024 Oracle and/or its affiliates. All rights reserved.
 * Copyright (c) 1998, 2024 IBM Corporation. All rights reserved.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Eclipse Public License v. 2.0 which is available at
 * http://www.eclipse.org/legal/epl-2.0,
 * or the Eclipse Distribution License v. 1.0 which is available at
 * http://www.eclipse.org/org/documents/edl-v10.php.
 *
 * SPDX-License-Identifier: EPL-2.0 OR BSD-3-Clause
 */

// Contributors:
//     Oracle - initial API and implementation from Oracle TopLink
//     02/11/2009-1.1 Michael O'Brien
//        - 259993: As part 2) During mergeClonesAfterCompletion()
//           If the the acquire and release threads are different
//           switch back to the stored acquire thread stored on the mergeManager.
//      tware, David Mulligan - fix performance issue with releasing locks
//     11/07/2017 - Dalia Abo Sheasha
//       - 526957 : Split the logging and trace messages
package org.eclipse.persistence.internal.helper;

import org.eclipse.persistence.descriptors.ClassDescriptor;
import org.eclipse.persistence.descriptors.FetchGroupManager;
import org.eclipse.persistence.exceptions.ConcurrencyException;
import org.eclipse.persistence.internal.helper.linkedlist.ExposedNodeLinkedList;
import org.eclipse.persistence.internal.identitymaps.CacheKey;
import org.eclipse.persistence.internal.localization.TraceLocalization;
import org.eclipse.persistence.internal.queries.ContainerPolicy;
import org.eclipse.persistence.internal.sessions.AbstractSession;
import org.eclipse.persistence.internal.sessions.MergeManager;
import org.eclipse.persistence.internal.sessions.ObjectChangeSet;
import org.eclipse.persistence.internal.sessions.UnitOfWorkChangeSet;
import org.eclipse.persistence.logging.SessionLog;
import org.eclipse.persistence.mappings.DatabaseMapping;

import java.util.Collection;
import java.util.IdentityHashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.Semaphore;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

import static java.util.Collections.unmodifiableMap;

/**
 * INTERNAL:
 * 

* Purpose: Acquires all required locks for a particular merge process. * Implements a deadlock avoidance algorithm to prevent concurrent merge conflicts. * *

* Responsibilities: *

    *
  • Acquires locks for writing threads. *
  • Provides deadlock avoidance behavior. *
  • Releases locks for writing threads. *
* @author Gordon Yorke * @since 10.0.3 */ public class WriteLockManager { /** * The code spots where we use this constant are code spots where we afraid the thread might be trying to run a * commit. Blowing up the thread with an interrupted exception might be too dangerous. We are not certain the * eclipselink code is able to cope with it and release all resources appropriately. * */ private static final Boolean ALLOW_INTERRUPTED_EXCEPTION_TO_BE_FIRED_UP_FALSE = false; /** * This flag we use if the write lock manager is stuck building clones of objects. Because we are not in the code * area of commit to the db anything. */ private static final Boolean ALLOW_INTERRUPTED_EXCEPTION_TO_BE_FIRED_UP_TRUE = true; /** * This a map from a thread to cache keys the thread is finding itself not being able to acquire. This map is * important to explain why a thread might be stuck in a stack trace of the form: {@code * at java.lang.Class.getEnclosingMethod0(Native Method) at java.lang.Class.getEnclosingMethodInfo(Class.java:1072) at java.lang.Class.getEnclosingClass(Class.java:1272) at java.lang.Class.getSimpleBinaryName(Class.java:1443) at java.lang.Class.getSimpleName(Class.java:1309) at org.eclipse.persistence.internal.identitymaps.IdentityMapManager.acquireLockNoWait(IdentityMapManager.java:205) at org.eclipse.persistence.internal.sessions.IdentityMapAccessor.acquireLockNoWait(IdentityMapAccessor.java:108) at org.eclipse.persistence.internal.helper.WriteLockManager.attemptToAcquireLock(WriteLockManager.java:431) at org.eclipse.persistence.internal.helper.WriteLockManager.acquireRequiredLocks(WriteLockManager.java:280) * } * * We want to be able to trace these dead lock situations. To put them our on the massive log dump as to do the dead * lock detection. * */ private static final Map> THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS = new ConcurrentHashMap<>(); /** * We want to have traceability of what objects where changed by thread that is in the middle of a commit. This * information can be useful when a massive dump is performed to explain the situation of any thread that might * eventually be stuck inside of the write lock manager to tells us what exactly are the objects it has changed and * wants to commit or merge into the shared cache. Relates to the * {@link #THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS} but this map does not tells us about any * specific problem such as a cache key that could not be acquired just tells us what objects were modified. * */ private static final Map> MAP_WRITE_LOCK_MANAGER_THREAD_TO_OBJECT_IDS_WITH_CHANGE_SET = new ConcurrentHashMap<>(); /** Semaphore related properties */ private static final transient ThreadLocal SEMAPHORE_THREAD_LOCAL_VAR = new ThreadLocal<>(); private static final transient int SEMAPHORE_MAX_NUMBER_THREADS = ConcurrencyUtil.SINGLETON.getNoOfThreadsAllowedToDoWriteLockManagerAcquireRequiredLocksInParallel(); private static final transient Semaphore SEMAPHORE_LIMIT_MAX_NUMBER_OF_THREADS_WRITE_LOCK_MANAGER = new Semaphore(SEMAPHORE_MAX_NUMBER_THREADS); private transient ConcurrencySemaphore writeLockManagerSemaphore = new ConcurrencySemaphore(SEMAPHORE_THREAD_LOCAL_VAR, SEMAPHORE_MAX_NUMBER_THREADS, SEMAPHORE_LIMIT_MAX_NUMBER_OF_THREADS_WRITE_LOCK_MANAGER, this,"write_lock_manager_semaphore_acquired_01"); // this will allow us to prevent a readlock thread from looping forever. public static final int MAXTRIES = 10000; public static final int MAX_WAIT = 600000; //10 mins /* This attribute stores the list of threads that have had a problem acquiring locks */ /* the first element in this list will be the prevailing thread */ protected ExposedNodeLinkedList prevailingQueue; private final Lock instancePrevailingQueueLock = new ReentrantLock(); public WriteLockManager() { this.prevailingQueue = new ExposedNodeLinkedList(); } /** * INTERNAL: * This method will return once the object is locked and all non-indirect * related objects are also locked. */ public Map acquireLocksForClone(Object objectForClone, ClassDescriptor descriptor, CacheKey cacheKey, AbstractSession cloningSession) { // determineIfReleaseDeferredLockAppearsToBeDeadLocked final long whileStartTimeMillis = System.currentTimeMillis(); final Thread currentThread = Thread.currentThread(); DeferredLockManager lockManager = ConcurrencyManager.getDeferredLockManager(currentThread); ReadLockManager readLockManager = ConcurrencyManager.getReadLockManager(currentThread); boolean successful = false; IdentityHashMap lockedObjects = new IdentityHashMap(); IdentityHashMap refreshedObjects = new IdentityHashMap(); CacheKey lastCacheKeyWeNeededToWaitToAcquire = null; try { // if the descriptor has indirection for all mappings then wait as there will be no deadlock risks CacheKey toWaitOn = acquireLockAndRelatedLocks(objectForClone, lockedObjects, refreshedObjects, cacheKey, descriptor, cloningSession); int tries = 0; while (toWaitOn != null) {// loop until we've tried too many times. for (Iterator lockedList = lockedObjects.values().iterator(); lockedList.hasNext();) { ((CacheKey)lockedList.next()).releaseReadLock(); lockedList.remove(); } // of the concurrency manager that we use for creating the massive log dump // to indicate that the current thread is now stuck trying to acquire some arbitrary // cache key for writing StackTraceElement stackTraceElement = Thread.currentThread().getStackTrace()[1]; lastCacheKeyWeNeededToWaitToAcquire = toWaitOn; lastCacheKeyWeNeededToWaitToAcquire.putThreadAsWaitingToAcquireLockForWriting(currentThread, stackTraceElement.getClassName() + "." + stackTraceElement.getMethodName() + "(...)"); // Since we know this one of those methods that can appear in the dead locks // we threads frozen here forever inside of the wait that used to have no timeout // we will now always check for how long the current thread is stuck in this while loop going nowhere // using the exact same approach we have been adding to the concurrency manager ConcurrencyUtil.SINGLETON.determineIfReleaseDeferredLockAppearsToBeDeadLocked(toWaitOn, whileStartTimeMillis, lockManager, readLockManager, ALLOW_INTERRUPTED_EXCEPTION_TO_BE_FIRED_UP_TRUE); toWaitOn.getInstanceLock().lock(); try { if (toWaitOn.isAcquired()) {//last minute check to insure it is still locked. toWaitOn.getInstanceLockCondition().await(MAX_WAIT, TimeUnit.MILLISECONDS);// wait for lock on object to be released } } catch (InterruptedException ex) { // Ignore exception thread should continue. } finally { toWaitOn.getInstanceLock().unlock(); } Object waitObject = toWaitOn.getObject(); // Object may be null for loss of identity. if (waitObject != null) { cloningSession.checkAndRefreshInvalidObject(waitObject, toWaitOn, cloningSession.getDescriptor(waitObject)); refreshedObjects.put(waitObject, waitObject); } toWaitOn = acquireLockAndRelatedLocks(objectForClone, lockedObjects, refreshedObjects, cacheKey, descriptor, cloningSession); if ((toWaitOn != null) && ((++tries) > MAXTRIES)) { // If we've tried too many times abort. throw ConcurrencyException.maxTriesLockOnCloneExceded(objectForClone); } } successful = true;//successfully acquired all locks } catch (InterruptedException exception) { throw ConcurrencyException.maxTriesLockOnCloneExceded(objectForClone); } finally { if (lastCacheKeyWeNeededToWaitToAcquire != null) { lastCacheKeyWeNeededToWaitToAcquire.removeThreadNoLongerWaitingToAcquireLockForWriting(currentThread); } if (!successful) {//did not acquire locks but we are exiting for (Iterator lockedList = lockedObjects.values().iterator(); lockedList.hasNext();) { ((CacheKey)lockedList.next()).releaseReadLock(); lockedList.remove(); } } } return lockedObjects; } /** * INTERNAL: * This is a recursive method used to acquire read locks on all objects that * will be cloned. These include all related objects for which there is no * indirection. * The returned object is the first object that the lock could not be acquired for. * The caller must try for exceptions and release locked objects in the case * of an exception. */ public CacheKey acquireLockAndRelatedLocks(Object objectForClone, Map lockedObjects, Map refreshedObjects, CacheKey cacheKey, ClassDescriptor descriptor, AbstractSession cloningSession) { if (!refreshedObjects.containsKey(objectForClone) && cloningSession.isConsideredInvalid(objectForClone, cacheKey, descriptor)) { return cacheKey; } // Attempt to get a read-lock, null is returned if cannot be read-locked. if (cacheKey.acquireReadLockNoWait()) { if (cacheKey.getObject() == null) { // This will be the case for deleted objects, NoIdentityMap, and aggregates. lockedObjects.put(objectForClone, cacheKey); } else { objectForClone = cacheKey.getObject(); if (lockedObjects.containsKey(objectForClone)) { // This is a check for loss of identity, the original check in // checkAndLockObject() will shortcircuit in the usual case. cacheKey.releaseReadLock(); return null; } // Store locked cachekey for release later. lockedObjects.put(objectForClone, cacheKey); } return traverseRelatedLocks(objectForClone, lockedObjects, refreshedObjects, descriptor, cloningSession); } else { // Return the cache key that could not be locked. return cacheKey; } } /** * INTERNAL: * This method will transition the previously acquired active * locks to deferred locks in the case a readlock could not be acquired for * a related object. Deferred locks must be employed to prevent deadlock * when waiting for the readlock while still protecting readers from * incomplete data. */ public void transitionToDeferredLocks(MergeManager mergeManager){ try{ if (mergeManager.isTransitionedToDeferredLocks()) { return; } for (CacheKey cacheKey : mergeManager.getAcquiredLocks()){ cacheKey.transitionToDeferredLock(); } mergeManager.transitionToDeferredLocks(); }catch (RuntimeException ex){ for (CacheKey cacheKey : mergeManager.getAcquiredLocks()){ cacheKey.release(); } ConcurrencyManager.getDeferredLockManager(Thread.currentThread()).setIsThreadComplete(true); ConcurrencyManager.removeDeferredLockManager(Thread.currentThread()); mergeManager.getAcquiredLocks().clear(); throw ex; } } /** * INTERNAL: * Traverse the object and acquire locks on all related objects. */ public CacheKey traverseRelatedLocks(Object objectForClone, Map lockedObjects, Map refreshedObjects, ClassDescriptor descriptor, AbstractSession cloningSession) { // If all mappings have indirection short-circuit. if (descriptor.shouldAcquireCascadedLocks()) { FetchGroupManager fetchGroupManager = descriptor.getFetchGroupManager(); boolean isPartialObject = (fetchGroupManager != null) && fetchGroupManager.isPartialObject(objectForClone); for (Iterator mappings = descriptor.getLockableMappings().iterator(); mappings.hasNext();) { DatabaseMapping mapping = mappings.next(); // Only cascade fetched mappings. if (!isPartialObject || (fetchGroupManager.isAttributeFetched(objectForClone, mapping.getAttributeName()))) { // any mapping in this list must not have indirection. Object objectToLock = mapping.getAttributeValueFromObject(objectForClone); if (mapping.isCollectionMapping()) { // Ignore null, means empty. if (objectToLock != null) { ContainerPolicy cp = mapping.getContainerPolicy(); Object iterator = cp.iteratorFor(objectToLock); while (cp.hasNext(iterator)) { Object object = cp.next(iterator, cloningSession); if (mapping.getReferenceDescriptor().hasWrapperPolicy()) { object = mapping.getReferenceDescriptor().getWrapperPolicy().unwrapObject(object, cloningSession); } CacheKey toWaitOn = checkAndLockObject(object, lockedObjects, refreshedObjects, mapping, cloningSession); if (toWaitOn != null) { return toWaitOn; } } } } else { if (mapping.getReferenceDescriptor().hasWrapperPolicy()) { objectToLock = mapping.getReferenceDescriptor().getWrapperPolicy().unwrapObject(objectToLock, cloningSession); } CacheKey toWaitOn = checkAndLockObject(objectToLock, lockedObjects, refreshedObjects, mapping, cloningSession); if (toWaitOn != null) { return toWaitOn; } } } } } return null; } /** * INTERNAL: * This method will be the entry point for threads attempting to acquire locks for all objects that have * a changeset. This method will hand off the processing of the deadlock algorithm to other member * methods. The mergeManager must be the active mergemanager for the calling thread. * Returns true if all required locks were acquired * This is wrapper method with semaphore logic. */ public void acquireRequiredLocks(MergeManager mergeManager, UnitOfWorkChangeSet changeSet) { boolean semaphoreWasAcquired = false; boolean useSemaphore = ConcurrencyUtil.SINGLETON.isUseSemaphoreToLimitConcurrencyOnWriteLockManagerAcquireRequiredLocks(); try { semaphoreWasAcquired = writeLockManagerSemaphore.acquireSemaphoreIfAppropriate(useSemaphore); acquireRequiredLocksInternal(mergeManager, changeSet); } finally { writeLockManagerSemaphore.releaseSemaphoreAllowOtherThreadsToStartDoingObjectBuilding(semaphoreWasAcquired); } } /** * INTERNAL: * This method will be the entry point for threads attempting to acquire locks for all objects that have * a changeset. This method will hand off the processing of the deadlock algorithm to other member * methods. The mergeManager must be the active mergemanager for the calling thread. * Returns true if all required locks were acquired */ private void acquireRequiredLocksInternal(MergeManager mergeManager, UnitOfWorkChangeSet changeSet) { if (!MergeManager.LOCK_ON_MERGE) {//lockOnMerge is a backdoor and not public return; } boolean locksToAcquire = true; final Thread currentThread = Thread.currentThread(); final long timeWhenLocksToAcquireLoopStarted = System.currentTimeMillis(); populateMapThreadToObjectIdsWithChagenSet(currentThread, changeSet.getAllChangeSets().values()); clearMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(currentThread); //while that thread has locks to acquire continue to loop. try { // initialize the MergeManager during this commit or merge for insert/updates only // this call is not required in acquireLocksForClone() or acquireLockAndRelatedLocks() mergeManager.setLockThread(Thread.currentThread()); AbstractSession session = mergeManager.getSession(); // If the session in the mergemanager is not a unit of work then the // merge is of a changeSet into a distributed session. if (session.isUnitOfWork()) { session = session.getParent(); } while (locksToAcquire) { //lets assume all locks will be acquired locksToAcquire = false; //first access the changeSet and begin to acquire locks ClassDescriptor descriptor = null; for (ObjectChangeSet objectChangeSet : changeSet.getAllChangeSets().values()) { // No Need to acquire locks for invalidated objects. if ((mergeManager.shouldMergeChangesIntoDistributedCache() && (objectChangeSet.getSynchronizationType() == ClassDescriptor.INVALIDATE_CHANGED_OBJECTS)) || objectChangeSet.getId() == null) { //skip this process as we will be unable to acquire the correct cachekey anyway //this is a new object with identity after write sequencing, ? huh, all objects must have an id by merge? continue; } descriptor = objectChangeSet.getDescriptor(); // Maybe null for distributed merge, initialize it. if (descriptor == null) { descriptor = session.getDescriptor(objectChangeSet.getClassType(session)); objectChangeSet.setDescriptor(descriptor); } // PERF: Do not merge nor lock into the session cache if descriptor set to unit of work isolated. if (descriptor.getCachePolicy().shouldIsolateObjectsInUnitOfWork()) { continue; } AbstractSession targetSession = session.getParentIdentityMapSession(descriptor, true, true); CacheKey activeCacheKey = attemptToAcquireLock(descriptor, objectChangeSet.getId(), targetSession); if (activeCacheKey == null) { // if cacheKey is null then the lock was not available no need to synchronize this block,because if the // check fails then this thread will just return to the queue until it gets woken up. if (this.prevailingQueue.getFirst() == mergeManager) { // wait on this object until it is free, or until wait time expires because // this thread is the prevailing thread // see bug 483478 activeCacheKey = waitOnObjectLock(descriptor, objectChangeSet.getId(), targetSession, (int) Math.round(((0.001d + Math.random()) * 500))); } if (activeCacheKey == null) { // failed to acquire lock, release all acquired // locks and place thread on waiting list releaseAllAcquiredLocks(mergeManager); // get cacheKey activeCacheKey = targetSession.getIdentityMapAccessorInstance().getCacheKeyForObjectForLock(objectChangeSet.getId(), descriptor.getJavaClass(), descriptor); if (session.shouldLog(SessionLog.FINER, SessionLog.CACHE)) { Object[] params = new Object[3]; params[0] = descriptor.getJavaClass(); params[1] = objectChangeSet.getId(); params[2] = Thread.currentThread().getName(); session.log(SessionLog.FINER, SessionLog.CACHE, "dead_lock_encountered_on_write_no_cachekey", params, null); } if (mergeManager.getWriteLockQueued() == null) { // thread is entering the wait queue for the // first time // set the QueueNode to be the node from the // linked list for quick removal upon // acquiring all locks instancePrevailingQueueLock.lock(); try { mergeManager.setQueueNode(this.prevailingQueue.addLast(mergeManager)); } finally { instancePrevailingQueueLock.unlock(); } } // set the cache key on the merge manager for // the object that could not be acquired mergeManager.setWriteLockQueued(objectChangeSet.getId()); if (activeCacheKey != null){ //wait on the lock of the object that we couldn't get. activeCacheKey.getInstanceLock().lock(); try { // verify that the cache key is still locked before we wait on it, as //it may have been released since we tried to acquire it. if (activeCacheKey.isAcquired() && (activeCacheKey.getActiveThread() != Thread.currentThread())) { Thread thread = activeCacheKey.getActiveThread(); if (thread.isAlive()){ long time = System.currentTimeMillis(); activeCacheKey.getInstanceLockCondition().await(MAX_WAIT, TimeUnit.MILLISECONDS); if (System.currentTimeMillis() - time >= MAX_WAIT){ Object[] params = new Object[]{MAX_WAIT /1000, descriptor.getJavaClassName(), activeCacheKey.getKey(), thread.getName()}; StringBuilder buffer = new StringBuilder(TraceLocalization.buildMessage("max_time_exceeded_for_acquirerequiredlocks_wait", params)); StackTraceElement[] trace = thread.getStackTrace(); for (StackTraceElement element : trace){ buffer.append("\t\tat"); buffer.append(element.toString()); buffer.append("\n"); } session.log(SessionLog.SEVERE, SessionLog.CACHE, buffer.toString()); session.getIdentityMapAccessor().printIdentityMapLocks(); } }else{ session.log(SessionLog.SEVERE, SessionLog.CACHE, "releasing_invalid_lock", new Object[] { thread.getName(),descriptor.getJavaClass(), objectChangeSet.getId()}); //thread that held lock is no longer alive. Something bad has happened like while (activeCacheKey.isAcquired()){ // could have a depth greater than one. activeCacheKey.release(); } } } } catch (InterruptedException exception) { throw ConcurrencyException.waitWasInterrupted(exception.getMessage()); } finally { activeCacheKey.getInstanceLock().unlock(); } } // we want to record this information so that we have traceability over this sort of problems addCacheKeyToMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(currentThread, activeCacheKey, timeWhenLocksToAcquireLoopStarted); // failed to acquire, exit this loop to restart all over again. locksToAcquire = true; break; }else{ removeCacheKeyFromMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(currentThread, activeCacheKey); objectChangeSet.setActiveCacheKey(activeCacheKey); mergeManager.getAcquiredLocks().add(activeCacheKey); } } else { removeCacheKeyFromMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(currentThread, activeCacheKey); objectChangeSet.setActiveCacheKey(activeCacheKey); mergeManager.getAcquiredLocks().add(activeCacheKey); } } } } catch (RuntimeException exception) { // if there was an exception then release. //must not release in a finally block as release only occurs in this method // if there is a problem or all of the locks can not be acquired. releaseAllAcquiredLocks(mergeManager); throw exception; } catch (InterruptedException exception) { releaseAllAcquiredLocks(mergeManager); throw ConcurrencyException.waitFailureOnClientSession(exception); } catch (Error error){ releaseAllAcquiredLocks(mergeManager); mergeManager.getSession().logThrowable(SessionLog.SEVERE, SessionLog.TRANSACTION, error); throw error; }finally { if (mergeManager.getWriteLockQueued() != null) { //the merge manager entered the wait queue and must be cleaned up instancePrevailingQueueLock.lock(); try { this.prevailingQueue.remove(mergeManager.getQueueNode()); } finally { instancePrevailingQueueLock.unlock(); } mergeManager.setWriteLockQueued(null); } clearMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(currentThread); clearMapThreadToObjectIdsWithChagenSet(currentThread); } } /** * INTERNAL: * This method will be called by a merging thread that is attempting to lock * a new object that was not locked previously. Unlike the other methods * within this class this method will lock only this object. */ public CacheKey appendLock(Object primaryKey, Object objectToLock, ClassDescriptor descriptor, MergeManager mergeManager, AbstractSession session) { CacheKey lockedCacheKey = session.getIdentityMapAccessorInstance().acquireLockNoWait(primaryKey, descriptor.getJavaClass(), false, descriptor); if (lockedCacheKey == null) { session.getIdentityMapAccessorInstance().getWriteLockManager().transitionToDeferredLocks(mergeManager); lockedCacheKey = session.getIdentityMapAccessorInstance().acquireDeferredLock(primaryKey, descriptor.getJavaClass(), descriptor, true); Object cachedObject = lockedCacheKey.getObject(); if (cachedObject == null) { if (lockedCacheKey.getActiveThread() == Thread.currentThread()) { lockedCacheKey.setObject(objectToLock); } else { cachedObject = lockedCacheKey.waitForObject(); } } lockedCacheKey.releaseDeferredLock(); return lockedCacheKey; } else { if (lockedCacheKey.getObject() == null) { lockedCacheKey.setObject(objectToLock); // set the object in the // cachekey // for others to find an prevent cycles } if (mergeManager.isTransitionedToDeferredLocks()){ ConcurrencyManager.getDeferredLockManager(Thread.currentThread()).getActiveLocks().add(lockedCacheKey); }else{ mergeManager.getAcquiredLocks().add(lockedCacheKey); } return lockedCacheKey; } } /** * INTERNAL: * This method performs the operations of finding the cacheKey and locking it if possible. * Returns True if the lock was acquired, false otherwise */ protected CacheKey attemptToAcquireLock(ClassDescriptor descriptor, Object primaryKey, AbstractSession session) { return session.getIdentityMapAccessorInstance().acquireLockNoWait(primaryKey, descriptor.getJavaClass(), true, descriptor); } /** * INTERNAL: * Simply check that the object is not already locked then pass it on to the locking method */ protected CacheKey checkAndLockObject(Object objectToLock, Map lockedObjects, Map refreshedObjects, DatabaseMapping mapping, AbstractSession cloningSession) { //the cachekey should always reference an object otherwise what would we be cloning. if ((objectToLock != null) && !lockedObjects.containsKey(objectToLock)) { Object primaryKeyToLock = null; ClassDescriptor referenceDescriptor = null; if (mapping.getReferenceDescriptor().hasInheritance() || mapping.getReferenceDescriptor().isDescriptorForInterface()) { referenceDescriptor = cloningSession.getDescriptor(objectToLock); } else { referenceDescriptor = mapping.getReferenceDescriptor(); } // Need to traverse aggregates, but not lock aggregates directly. if (referenceDescriptor.isDescriptorTypeAggregate()) { traverseRelatedLocks(objectToLock, lockedObjects, refreshedObjects, referenceDescriptor, cloningSession); } else { primaryKeyToLock = referenceDescriptor.getObjectBuilder().extractPrimaryKeyFromObject(objectToLock, cloningSession); CacheKey cacheKey = cloningSession.getIdentityMapAccessorInstance().getCacheKeyForObjectForLock(primaryKeyToLock, objectToLock.getClass(), referenceDescriptor); if (cacheKey == null) { // Cache key may be null for no-identity map, missing or deleted object, just create a new one to be locked. cacheKey = new CacheKey(primaryKeyToLock); cacheKey.setReadTime(System.currentTimeMillis()); } CacheKey toWaitOn = acquireLockAndRelatedLocks(objectToLock, lockedObjects, refreshedObjects, cacheKey, referenceDescriptor, cloningSession); if (toWaitOn != null) { return toWaitOn; } } } return null; } /** * INTERNAL: * This method will release all acquired locks */ public void releaseAllAcquiredLocks(MergeManager mergeManager) { if (!MergeManager.LOCK_ON_MERGE) {//lockOnMerge is a backdoor and not public return; } List acquiredLocks = mergeManager.getAcquiredLocks(); Iterator locks = acquiredLocks.iterator(); RuntimeException exception = null; while (locks.hasNext()) { try { CacheKey cacheKeyToRemove = locks.next(); if (cacheKeyToRemove.getObject() == null) { cacheKeyToRemove.removeFromOwningMap(); } if (mergeManager.isTransitionedToDeferredLocks()) { cacheKeyToRemove.releaseDeferredLock(); } else { cacheKeyToRemove.release(); } } catch (RuntimeException e){ if (exception == null){ exception = e; } } } acquiredLocks.clear(); if (exception != null){ throw exception; } } /** * INTERNAL: * This method performs the operations of finding the cacheKey and locking it if possible. * Waits until the lock can be acquired */ protected CacheKey waitOnObjectLock(ClassDescriptor descriptor, Object primaryKey, AbstractSession session, int waitTime) { return session.getIdentityMapAccessorInstance().acquireLockWithWait(primaryKey, descriptor.getJavaClass(), true, descriptor, waitTime); } // Helper data structures to have tracebility about object ids with change sets and cache keys we are sturggling to acquire /** Getter for {@link #THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS} */ public static Map> getThreadToFailToAcquireCacheKeys() { return unmodifiableMap(THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS); } /** Getter for {@link #MAP_WRITE_LOCK_MANAGER_THREAD_TO_OBJECT_IDS_WITH_CHANGE_SET} */ public static Map> getMapWriteLockManagerThreadToObjectIdsWithChangeSet() { return unmodifiableMap(MAP_WRITE_LOCK_MANAGER_THREAD_TO_OBJECT_IDS_WITH_CHANGE_SET); } /** * Remove the current thread from the map of object ids with change sets that are about to bec ommited * * @param thread * the thread that is clearing itself out of the map of change sets it needs to merge into the shared * cache */ public static void clearMapThreadToObjectIdsWithChagenSet(Thread thread) { MAP_WRITE_LOCK_MANAGER_THREAD_TO_OBJECT_IDS_WITH_CHANGE_SET.remove(thread); } /** * Before a thread starts long wait loop to acquire write locks during a commit transaction the thread will record * in this map the object ids it holds with chance sets. It will be useful information if a dead lock is taking * place. * * @param thread * the thread that is in the middle of merge to the shared cache trying to acquire write locks to do this * merge * @param objectChangeSets * the object change sets it has in its hands and that it would like to merge into the cache */ public static void populateMapThreadToObjectIdsWithChagenSet(Thread thread, Collection objectChangeSets) { // (a) make sure the map has an entry for the the thread boolean hasKey = MAP_WRITE_LOCK_MANAGER_THREAD_TO_OBJECT_IDS_WITH_CHANGE_SET.containsKey(thread); if (!hasKey) { MAP_WRITE_LOCK_MANAGER_THREAD_TO_OBJECT_IDS_WITH_CHANGE_SET.putIfAbsent(thread, ConcurrentHashMap.newKeySet()); } // (b) The ids of the objects with change sets Set primarykeys = MAP_WRITE_LOCK_MANAGER_THREAD_TO_OBJECT_IDS_WITH_CHANGE_SET.get(thread); primarykeys.clear(); for (ObjectChangeSet objectChangeSet : objectChangeSets) { Object primaryKey = objectChangeSet.getId(); primarykeys.add(primaryKey); } } /** * Before the problematic while loop starts we should always clear for this thread the set of cache keys it could * not acquire. * * @param thread * the thread that what clear his set of cache keys it is struggling to acquire. */ public static void clearMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(Thread thread) { THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS.remove(thread); } /** * The thread was doing its while loop to acquire all required locks to proceed with the commmit and it realized * there was one cache key it is unable to acquire * * @param thread * thread the thread working on updating the shared cache * @param cacheKeyThatCouldNotBeAcquired * the cache key it is not managing to acquire * @throws InterruptedException * Should be fired because we are passing a flag into the * determineIfReleaseDeferredLockAppearsToBeDeadLocked to say we do not want the thread to be blown up * (e.g. we are afraid of breaking threads in the middle of a commit process could be quite dangerous). * See * {@link #ALLOW_INTERRUPTED_EXCEPTION_TO_BE_FIRED_UP_FALSE} */ public static void addCacheKeyToMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(Thread thread, ConcurrencyManager cacheKeyThatCouldNotBeAcquired, long whileStartDate) throws InterruptedException { // sanity check, make sure the cacheKeyThatCouldNotBeAcquired is not null // should never happen because when the write lock manager fails to acquire the cache key both with acquire no // wait and acquire with wait // then the code will just grab the cache key fro loggging puprposes using the // see the code getCacheKeyForObjectForLock // this is why we believe this is never null. But the sanity check does not hurt us. if (cacheKeyThatCouldNotBeAcquired == null) { return; } // (b) add the cache key to the set if absent Set cacheKeysWeAreHavingDifficultyAcquiring = getCacheKeysThatCouldNotBeAcquiredByThread( thread); if(!cacheKeysWeAreHavingDifficultyAcquiring.contains(cacheKeyThatCouldNotBeAcquired)) { cacheKeysWeAreHavingDifficultyAcquiring.add(cacheKeyThatCouldNotBeAcquired); } // (c) If a write lock fails to be acquired and goes into the basked of cache keys that could not be acquired // it could be an indication this thread is stuck for a long while // NOTE: // it might be best to not even give the possibility for an exception to be fired // for code that is in the lock manager final Thread currentThread = Thread.currentThread(); DeferredLockManager lockManager = ConcurrencyManager.getDeferredLockManager(currentThread); ReadLockManager readLockManager = ConcurrencyManager.getReadLockManager(currentThread); ConcurrencyUtil.SINGLETON.determineIfReleaseDeferredLockAppearsToBeDeadLocked( cacheKeyThatCouldNotBeAcquired, whileStartDate, lockManager, readLockManager, ALLOW_INTERRUPTED_EXCEPTION_TO_BE_FIRED_UP_FALSE); } /** * A cache keys was successfully acquired we want to make sure it is not recorded in the map of cache keys that * could not be acquired. The situation theoretically can change. Failing to acquire a write lock can be a temporary * situation. The lock might become available eventually. Otherwise there would be no point for the while loop that * is trying to acquire these locks. * * @param thread * the thread that just managed to grab a write lock * @param cacheKeyThatCouldNotBeAcquired * the cache key it managed to acquire for writing. */ public static void removeCacheKeyFromMapWriteLockManagerToCacheKeysThatCouldNotBeAcquired(Thread thread, ConcurrencyManager cacheKeyThatCouldNotBeAcquired) { Set cacheKeysWeAreHavingDifficultyAcquiring = getCacheKeysThatCouldNotBeAcquiredByThread( thread); cacheKeysWeAreHavingDifficultyAcquiring.remove(cacheKeyThatCouldNotBeAcquired); } /** * If the thread is not yet registered in the map it will get registered with an empty map. * * @param thread * the thread that wants to get its set of cache keys it is not managing to acquire. * @return the set of cache keys the thrad is struggling to acquire */ private static Set getCacheKeysThatCouldNotBeAcquiredByThread(Thread thread) { // (a) make sure the map has an entry for the the thread boolean hasKey = THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS.containsKey(thread); if (!hasKey) { Set cacheKeySet = ConcurrentHashMap.newKeySet(); THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS.putIfAbsent(thread, cacheKeySet); } // (b) We are certain the map is not empty anymore return the set return THREAD_TO_FAIL_TO_ACQUIRE_CACHE_KEYS.get(thread); } }