org.eclipse.swt.graphics.ImageData Maven / Gradle / Ivy
Show all versions of org.eclipse.swt.gtk.linux.ppc64le Show documentation
/*******************************************************************************
* Copyright (c) 2000, 2016 IBM Corporation and others.
*
* This program and the accompanying materials
* are made available under the terms of the Eclipse Public License 2.0
* which accompanies this distribution, and is available at
* https://www.eclipse.org/legal/epl-2.0/
*
* SPDX-License-Identifier: EPL-2.0
*
* Contributors:
* IBM Corporation - initial API and implementation
*******************************************************************************/
package org.eclipse.swt.graphics;
import java.io.*;
import org.eclipse.swt.*;
import org.eclipse.swt.internal.*;
/**
* Instances of this class are device-independent descriptions
* of images. They are typically used as an intermediate format
* between loading from or writing to streams and creating an
* Image
.
*
* Note that the public fields x
, y
,
* disposalMethod
and delayTime
are
* typically only used when the image is in a set of images used
* for animation.
*
*
* @see Image
* @see ImageLoader
* @see ImageData snippets
* @see SWT Example: ImageAnalyzer
* @see Sample code and further information
*/
public final class ImageData implements Cloneable {
/**
* The width of the image, in pixels.
*/
public int width;
/**
* The height of the image, in pixels.
*/
public int height;
/**
* The color depth of the image, in bits per pixel.
*
* Note that a depth of 8 or less does not necessarily
* mean that the image is palette indexed, or
* conversely that a depth greater than 8 means that
* the image is direct color. Check the associated
* PaletteData's isDirect field for such determinations.
*/
public int depth;
/**
* The scanline padding.
*
* If one scanline of the image is not a multiple of
* this number, it will be padded with zeros until it is.
*
*/
public int scanlinePad;
/**
* The number of bytes per scanline.
*
* This is a multiple of the scanline padding.
*
*/
public int bytesPerLine;
/**
* The pixel data of the image.
*
* Note that for 16 bit depth images the pixel data is stored
* in least significant byte order; however, for 24bit and
* 32bit depth images the pixel data is stored in most
* significant byte order.
*
*/
public byte[] data;
/**
* The color table for the image.
*/
public PaletteData palette;
/**
* The transparent pixel.
*
* Pixels with this value are transparent.
*
* The default is -1 which means 'no transparent pixel'.
*
*/
public int transparentPixel;
/**
* An icon-specific field containing the data from the icon mask.
*
* This is a 1 bit bitmap stored with the most significant
* bit first. The number of bytes per scanline is
* '((width + 7) / 8 + (maskPad - 1)) / maskPad * maskPad'.
*
* The default is null which means 'no transparency mask'.
*
*/
public byte[] maskData;
/**
* An icon-specific field containing the scanline pad of the mask.
*
* If one scanline of the transparency mask is not a
* multiple of this number, it will be padded with zeros until
* it is.
*
*/
public int maskPad;
/**
* The alpha data of the image.
*
* Every pixel can have an alpha blending value that
* varies from 0, meaning fully transparent, to 255 meaning
* fully opaque. The number of bytes per scanline is
* 'width'.
*
*/
public byte[] alphaData;
/**
* The global alpha value to be used for every pixel.
*
* If this value is set, the alphaData
field
* is ignored and when the image is rendered each pixel
* will be blended with the background an amount
* proportional to this value.
*
* The default is -1 which means 'no global alpha value'
*
*/
public int alpha;
/**
* The type of file from which the image was read.
*
* It is expressed as one of the following values:
*
* IMAGE_BMP
* - Windows BMP file format, no compression
* IMAGE_BMP_RLE
* - Windows BMP file format, RLE compression if appropriate
* IMAGE_GIF
* - GIF file format
* IMAGE_ICO
* - Windows ICO file format
* IMAGE_JPEG
* - JPEG file format
* IMAGE_PNG
* - PNG file format
*
*/
public int type;
/**
* The x coordinate of the top left corner of the image
* within the logical screen (this field corresponds to
* the GIF89a Image Left Position value).
*/
public int x;
/**
* The y coordinate of the top left corner of the image
* within the logical screen (this field corresponds to
* the GIF89a Image Top Position value).
*/
public int y;
/**
* A description of how to dispose of the current image
* before displaying the next.
*
* It is expressed as one of the following values:
*
* DM_UNSPECIFIED
* - disposal method not specified
* DM_FILL_NONE
* - do nothing - leave the image in place
* DM_FILL_BACKGROUND
* - fill with the background color
* DM_FILL_PREVIOUS
* - restore the previous picture
*
* (this field corresponds to the GIF89a Disposal Method value)
*/
public int disposalMethod;
/**
* The time to delay before displaying the next image
* in an animation (this field corresponds to the GIF89a
* Delay Time value).
*/
public int delayTime;
/**
* Arbitrary channel width data to 8-bit conversion table.
*/
static final byte[][] ANY_TO_EIGHT = new byte[9][];
static {
for (int b = 0; b < 9; ++b) {
byte[] data = ANY_TO_EIGHT[b] = new byte[1 << b];
if (b == 0) continue;
int inc = 0;
for (int bit = 0x10000; (bit >>= b) != 0;) inc |= bit;
for (int v = 0, p = 0; v < 0x10000; v+= inc) data[p++] = (byte)(v >> 8);
}
}
static final byte[] ONE_TO_ONE_MAPPING = ANY_TO_EIGHT[8];
/**
* Scaled 8x8 Bayer dither matrix.
*/
static final int[][] DITHER_MATRIX = {
{ 0xfc0000, 0x7c0000, 0xdc0000, 0x5c0000, 0xf40000, 0x740000, 0xd40000, 0x540000 },
{ 0x3c0000, 0xbc0000, 0x1c0000, 0x9c0000, 0x340000, 0xb40000, 0x140000, 0x940000 },
{ 0xcc0000, 0x4c0000, 0xec0000, 0x6c0000, 0xc40000, 0x440000, 0xe40000, 0x640000 },
{ 0x0c0000, 0x8c0000, 0x2c0000, 0xac0000, 0x040000, 0x840000, 0x240000, 0xa40000 },
{ 0xf00000, 0x700000, 0xd00000, 0x500000, 0xf80000, 0x780000, 0xd80000, 0x580000 },
{ 0x300000, 0xb00000, 0x100000, 0x900000, 0x380000, 0xb80000, 0x180000, 0x980000 },
{ 0xc00000, 0x400000, 0xe00000, 0x600000, 0xc80000, 0x480000, 0xe80000, 0x680000 },
{ 0x000000, 0x800000, 0x200000, 0xa00000, 0x080000, 0x880000, 0x280000, 0xa80000 }
};
/**
* Constructs a new, empty ImageData with the given width, height,
* depth and palette. The data will be initialized to an (all zero)
* array of the appropriate size.
*
* @param width the width of the image
* @param height the height of the image
* @param depth the depth of the image
* @param palette the palette of the image (must not be null)
*
* @exception IllegalArgumentException
* - ERROR_INVALID_ARGUMENT - if the width or height is zero or negative, or if the depth is not
* one of 1, 2, 4, 8, 16, 24 or 32
* - ERROR_NULL_ARGUMENT - if the palette is null
*
*/
public ImageData(int width, int height, int depth, PaletteData palette) {
this(width, height, depth, palette,
4, null, 0, null,
null, -1, -1, SWT.IMAGE_UNDEFINED,
0, 0, 0, 0);
}
/**
* Constructs a new, empty ImageData with the given width, height,
* depth, palette, scanlinePad and data.
*
* @param width the width of the image
* @param height the height of the image
* @param depth the depth of the image
* @param palette the palette of the image
* @param scanlinePad the padding of each line, in bytes
* @param data the data of the image
*
* @exception IllegalArgumentException
* - ERROR_INVALID_ARGUMENT - if the width or height is zero or negative, or if the depth is not
* one of 1, 2, 4, 8, 16, 24 or 32, or the data array is too small to contain the image data
* - ERROR_NULL_ARGUMENT - if the palette or data is null
* - ERROR_CANNOT_BE_ZERO - if the scanlinePad is zero
*
*/
public ImageData(int width, int height, int depth, PaletteData palette, int scanlinePad, byte[] data) {
this(width, height, depth, palette,
scanlinePad, checkData(data), 0, null,
null, -1, -1, SWT.IMAGE_UNDEFINED,
0, 0, 0, 0);
}
/**
* Constructs an ImageData
loaded from the specified
* input stream. Throws an error if an error occurs while loading
* the image, or if the image has an unsupported type. Application
* code is still responsible for closing the input stream.
*
* This constructor is provided for convenience when loading a single
* image only. If the stream contains multiple images, only the first
* one will be loaded. To load multiple images, use
* ImageLoader.load()
.
*
* This constructor may be used to load a resource as follows:
*
*
* static ImageData loadImageData (Class clazz, String string) {
* InputStream stream = clazz.getResourceAsStream (string);
* if (stream == null) return null;
* ImageData imageData = null;
* try {
* imageData = new ImageData (stream);
* } catch (SWTException ex) {
* } finally {
* try {
* stream.close ();
* } catch (IOException ex) {}
* }
* return imageData;
* }
*
*
* @param stream the input stream to load the image from (must not be null)
*
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if the stream is null
*
* @exception SWTException
* - ERROR_IO - if an IO error occurs while reading from the stream
* - ERROR_INVALID_IMAGE - if the image stream contains invalid data
* - ERROR_UNSUPPORTED_FORMAT - if the image stream contains an unrecognized format
*
*
* @see ImageLoader#load(InputStream)
*/
public ImageData(InputStream stream) {
ImageData[] data = ImageDataLoader.load(stream);
if (data.length < 1) SWT.error(SWT.ERROR_INVALID_IMAGE);
ImageData i = data[0];
setAllFields(
i.width,
i.height,
i.depth,
i.scanlinePad,
i.bytesPerLine,
i.data,
i.palette,
i.transparentPixel,
i.maskData,
i.maskPad,
i.alphaData,
i.alpha,
i.type,
i.x,
i.y,
i.disposalMethod,
i.delayTime);
}
/**
* Constructs an ImageData
loaded from a file with the
* specified name. Throws an error if an error occurs loading the
* image, or if the image has an unsupported type.
*
* This constructor is provided for convenience when loading a single
* image only. If the file contains multiple images, only the first
* one will be loaded. To load multiple images, use
* ImageLoader.load()
.
*
*
* @param filename the name of the file to load the image from (must not be null)
*
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if the file name is null
*
* @exception SWTException
* - ERROR_IO - if an IO error occurs while reading from the file
* - ERROR_INVALID_IMAGE - if the image file contains invalid data
* - ERROR_UNSUPPORTED_FORMAT - if the image file contains an unrecognized format
*
*/
public ImageData(String filename) {
ImageData[] data = ImageDataLoader.load(filename);
if (data.length < 1) SWT.error(SWT.ERROR_INVALID_IMAGE);
ImageData i = data[0];
setAllFields(
i.width,
i.height,
i.depth,
i.scanlinePad,
i.bytesPerLine,
i.data,
i.palette,
i.transparentPixel,
i.maskData,
i.maskPad,
i.alphaData,
i.alpha,
i.type,
i.x,
i.y,
i.disposalMethod,
i.delayTime);
}
/**
* Prevents uninitialized instances from being created outside the package.
*/
ImageData() {
}
/**
* Constructs an image data by giving values for all non-computable fields.
*
* This method is for internal use, and is not described further.
*
*/
ImageData(
int width, int height, int depth, PaletteData palette,
int scanlinePad, byte[] data, int maskPad, byte[] maskData,
byte[] alphaData, int alpha, int transparentPixel, int type,
int x, int y, int disposalMethod, int delayTime)
{
if (palette == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
if (!(depth == 1 || depth == 2 || depth == 4 || depth == 8
|| depth == 16 || depth == 24 || depth == 32)) {
SWT.error(SWT.ERROR_INVALID_ARGUMENT);
}
if (width <= 0 || height <= 0) {
SWT.error(SWT.ERROR_INVALID_ARGUMENT);
}
if (scanlinePad == 0) SWT.error (SWT.ERROR_CANNOT_BE_ZERO);
int bytesPerLine = (((width * depth + 7) / 8) + (scanlinePad - 1))
/ scanlinePad * scanlinePad;
/*
* When the image is being loaded from a PNG, we need to use the theoretical minimum
* number of bytes per line to check whether there is enough data, because the actual
* number of bytes per line is calculated based on the given depth, which may be larger
* than the actual depth of the PNG.
*/
int minBytesPerLine = type == SWT.IMAGE_PNG ? ((((width + 7) / 8) + 3) / 4) * 4 : bytesPerLine;
if (data != null && data.length < minBytesPerLine * height) {
SWT.error(SWT.ERROR_INVALID_ARGUMENT);
}
setAllFields(
width,
height,
depth,
scanlinePad,
bytesPerLine,
data != null ? data : new byte[bytesPerLine * height],
palette,
transparentPixel,
maskData,
maskPad,
alphaData,
alpha,
type,
x,
y,
disposalMethod,
delayTime);
}
/**
* Initializes all fields in the receiver. This method must be called
* by all public constructors to ensure that all fields are initialized
* for a new ImageData object. If a new field is added to the class,
* then it must be added to this method.
*
* This method is for internal use, and is not described further.
*
*/
void setAllFields(int width, int height, int depth, int scanlinePad,
int bytesPerLine, byte[] data, PaletteData palette, int transparentPixel,
byte[] maskData, int maskPad, byte[] alphaData, int alpha,
int type, int x, int y, int disposalMethod, int delayTime) {
this.width = width;
this.height = height;
this.depth = depth;
this.scanlinePad = scanlinePad;
this.bytesPerLine = bytesPerLine;
this.data = data;
this.palette = palette;
this.transparentPixel = transparentPixel;
this.maskData = maskData;
this.maskPad = maskPad;
this.alphaData = alphaData;
this.alpha = alpha;
this.type = type;
this.x = x;
this.y = y;
this.disposalMethod = disposalMethod;
this.delayTime = delayTime;
}
/**
* Invokes internal SWT functionality to create a new instance of
* this class.
*
* IMPORTANT: This method is not part of the public
* API for ImageData
. It is marked public only so that it
* can be shared within the packages provided by SWT. It is subject
* to change without notice, and should never be called from
* application code.
*
*
* This method is for internal use, and is not described further.
*
*
* @noreference This method is not intended to be referenced by clients.
*/
public static ImageData internal_new(
int width, int height, int depth, PaletteData palette,
int scanlinePad, byte[] data, int maskPad, byte[] maskData,
byte[] alphaData, int alpha, int transparentPixel, int type,
int x, int y, int disposalMethod, int delayTime)
{
return new ImageData(
width, height, depth, palette, scanlinePad, data, maskPad, maskData,
alphaData, alpha, transparentPixel, type, x, y, disposalMethod, delayTime);
}
ImageData colorMaskImage(int pixel) {
ImageData mask = new ImageData(width, height, 1, bwPalette(),
2, null, 0, null, null, -1, -1, SWT.IMAGE_UNDEFINED,
0, 0, 0, 0);
int[] row = new int[width];
for (int y = 0; y < height; y++) {
getPixels(0, y, width, row, 0);
for (int i = 0; i < width; i++) {
if (pixel != -1 && row[i] == pixel) {
row[i] = 0;
} else {
row[i] = 1;
}
}
mask.setPixels(0, y, width, row, 0);
}
return mask;
}
static byte[] checkData(byte [] data) {
if (data == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
return data;
}
/**
* Returns a new instance of the same class as the receiver,
* whose slots have been filled in with copies of
* the values in the slots of the receiver. That is, the
* returned object is a deep copy of the receiver.
*
* @return a copy of the receiver.
*/
@Override
public Object clone() {
byte[] cloneData = new byte[data.length];
System.arraycopy(data, 0, cloneData, 0, data.length);
byte[] cloneMaskData = null;
if (maskData != null) {
cloneMaskData = new byte[maskData.length];
System.arraycopy(maskData, 0, cloneMaskData, 0, maskData.length);
}
byte[] cloneAlphaData = null;
if (alphaData != null) {
cloneAlphaData = new byte[alphaData.length];
System.arraycopy(alphaData, 0, cloneAlphaData, 0, alphaData.length);
}
return new ImageData(
width,
height,
depth,
palette,
scanlinePad,
cloneData,
maskPad,
cloneMaskData,
cloneAlphaData,
alpha,
transparentPixel,
type,
x,
y,
disposalMethod,
delayTime);
}
/**
* Returns the alpha value at offset x
in
* scanline y
in the receiver's alpha data.
* The alpha value is between 0 (transparent) and
* 255 (opaque).
*
* @param x the x coordinate of the pixel to get the alpha value of
* @param y the y coordinate of the pixel to get the alpha value of
* @return the alpha value at the given coordinates
*
* @exception IllegalArgumentException
* - ERROR_INVALID_ARGUMENT - if either argument is out of range
*
*/
public int getAlpha(int x, int y) {
if (x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (alphaData == null) return 255;
return alphaData[y * width + x] & 0xFF;
}
/**
* Returns getWidth
alpha values starting at offset
* x
in scanline y
in the receiver's alpha
* data starting at startIndex
. The alpha values
* are unsigned, between (byte)0
(transparent) and
* (byte)255
(opaque).
*
* @param x the x position of the pixel to begin getting alpha values
* @param y the y position of the pixel to begin getting alpha values
* @param getWidth the width of the data to get
* @param alphas the buffer in which to put the alpha values
* @param startIndex the offset into the image to begin getting alpha values
*
* @exception IndexOutOfBoundsException if getWidth is too large
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if pixels is null
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
* - ERROR_INVALID_ARGUMENT - if getWidth is negative
*
*/
public void getAlphas(int x, int y, int getWidth, byte[] alphas, int startIndex) {
if (alphas == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
if (getWidth < 0 || x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (getWidth == 0) return;
if (alphaData == null) {
int endIndex = startIndex + getWidth;
for (int i = startIndex; i < endIndex; i++) {
alphas[i] = (byte)255;
}
return;
}
// may throw an IndexOutOfBoundsException
System.arraycopy(alphaData, y * width + x, alphas, startIndex, getWidth);
}
/**
* Returns the pixel value at offset x
in
* scanline y
in the receiver's data.
*
* @param x the x position of the pixel to get
* @param y the y position of the pixel to get
* @return the pixel at the given coordinates
*
* @exception IllegalArgumentException
* - ERROR_INVALID_ARGUMENT - if either argument is out of bounds
*
* @exception SWTException
* - ERROR_UNSUPPORTED_DEPTH if the depth is not one of 1, 2, 4, 8, 16, 24 or 32
*
*/
public int getPixel(int x, int y) {
if (x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
int index;
int theByte;
int mask;
switch (depth) {
case 32:
index = (y * bytesPerLine) + (x * 4);
return ((data[index] & 0xFF) << 24) + ((data[index+1] & 0xFF) << 16) +
((data[index+2] & 0xFF) << 8) + (data[index+3] & 0xFF);
case 24:
index = (y * bytesPerLine) + (x * 3);
return ((data[index] & 0xFF) << 16) + ((data[index+1] & 0xFF) << 8) +
(data[index+2] & 0xFF);
case 16:
index = (y * bytesPerLine) + (x * 2);
return ((data[index+1] & 0xFF) << 8) + (data[index] & 0xFF);
case 8:
index = (y * bytesPerLine) + x ;
return data[index] & 0xFF;
case 4:
index = (y * bytesPerLine) + (x >> 1);
theByte = data[index] & 0xFF;
if ((x & 0x1) == 0) {
return theByte >> 4;
} else {
return theByte & 0x0F;
}
case 2:
index = (y * bytesPerLine) + (x >> 2);
theByte = data[index] & 0xFF;
int offset = 3 - (x % 4);
mask = 3 << (offset * 2);
return (theByte & mask) >> (offset * 2);
case 1:
index = (y * bytesPerLine) + (x >> 3);
theByte = data[index] & 0xFF;
mask = 1 << (7 - (x & 0x7));
if ((theByte & mask) == 0) {
return 0;
} else {
return 1;
}
}
SWT.error(SWT.ERROR_UNSUPPORTED_DEPTH);
return 0;
}
/**
* Returns getWidth
pixel values starting at offset
* x
in scanline y
in the receiver's
* data starting at startIndex
.
*
* @param x the x position of the first pixel to get
* @param y the y position of the first pixel to get
* @param getWidth the width of the data to get
* @param pixels the buffer in which to put the pixels
* @param startIndex the offset into the byte array to begin storing pixels
*
* @exception IndexOutOfBoundsException if getWidth is too large
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if pixels is null
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
* - ERROR_INVALID_ARGUMENT - if getWidth is negative
*
* @exception SWTException
* - ERROR_UNSUPPORTED_DEPTH - if the depth is not one of 1, 2, 4 or 8
* (For higher depths, use the int[] version of this method.)
*
*/
public void getPixels(int x, int y, int getWidth, byte[] pixels, int startIndex) {
if (pixels == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
if (getWidth < 0 || x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (getWidth == 0) return;
int index;
int theByte;
int mask = 0;
int n = getWidth;
int i = startIndex;
int srcX = x, srcY = y;
switch (depth) {
case 8:
index = (y * bytesPerLine) + x;
for (int j = 0; j < getWidth; j++) {
pixels[i] = data[index];
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
return;
case 4:
index = (y * bytesPerLine) + (x >> 1);
if ((x & 0x1) == 1) {
theByte = data[index] & 0xFF;
pixels[i] = (byte)(theByte & 0x0F);
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
while (n > 1) {
theByte = data[index] & 0xFF;
pixels[i] = (byte)(theByte >> 4);
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
pixels[i] = (byte)(theByte & 0x0F);
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
}
if (n > 0) {
theByte = data[index] & 0xFF;
pixels[i] = (byte)(theByte >> 4);
}
return;
case 2:
index = (y * bytesPerLine) + (x >> 2);
theByte = data[index] & 0xFF;
int offset;
while (n > 0) {
offset = 3 - (srcX % 4);
mask = 3 << (offset * 2);
pixels[i] = (byte)((theByte & mask) >> (offset * 2));
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
if (n > 0) theByte = data[index] & 0xFF;
srcX = 0;
} else {
if (offset == 0) {
index++;
theByte = data[index] & 0xFF;
}
}
}
return;
case 1:
index = (y * bytesPerLine) + (x >> 3);
theByte = data[index] & 0xFF;
while (n > 0) {
mask = 1 << (7 - (srcX & 0x7));
if ((theByte & mask) == 0) {
pixels[i] = 0;
} else {
pixels[i] = 1;
}
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
if (n > 0) theByte = data[index] & 0xFF;
srcX = 0;
} else {
if (mask == 1) {
index++;
if (n > 0) theByte = data[index] & 0xFF;
}
}
}
return;
}
SWT.error(SWT.ERROR_UNSUPPORTED_DEPTH);
}
/**
* Returns getWidth
pixel values starting at offset
* x
in scanline y
in the receiver's
* data starting at startIndex
.
*
* @param x the x position of the first pixel to get
* @param y the y position of the first pixel to get
* @param getWidth the width of the data to get
* @param pixels the buffer in which to put the pixels
* @param startIndex the offset into the buffer to begin storing pixels
*
* @exception IndexOutOfBoundsException if getWidth is too large
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if pixels is null
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
* - ERROR_INVALID_ARGUMENT - if getWidth is negative
*
* @exception SWTException
* - ERROR_UNSUPPORTED_DEPTH - if the depth is not one of 1, 2, 4, 8, 16, 24 or 32
*
*/
public void getPixels(int x, int y, int getWidth, int[] pixels, int startIndex) {
if (pixels == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
if (getWidth < 0 || x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (getWidth == 0) return;
int index;
int theByte;
int mask;
int n = getWidth;
int i = startIndex;
int srcX = x, srcY = y;
switch (depth) {
case 32:
index = (y * bytesPerLine) + (x * 4);
i = startIndex;
for (int j = 0; j < getWidth; j++) {
pixels[i] = ((data[index] & 0xFF) << 24) | ((data[index+1] & 0xFF) << 16)
| ((data[index+2] & 0xFF) << 8) | (data[index+3] & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index += 4;
}
}
return;
case 24:
index = (y * bytesPerLine) + (x * 3);
for (int j = 0; j < getWidth; j++) {
pixels[i] = ((data[index] & 0xFF) << 16) | ((data[index+1] & 0xFF) << 8)
| (data[index+2] & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index += 3;
}
}
return;
case 16:
index = (y * bytesPerLine) + (x * 2);
for (int j = 0; j < getWidth; j++) {
pixels[i] = ((data[index+1] & 0xFF) << 8) + (data[index] & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index += 2;
}
}
return;
case 8:
index = (y * bytesPerLine) + x;
for (int j = 0; j < getWidth; j++) {
pixels[i] = data[index] & 0xFF;
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
return;
case 4:
index = (y * bytesPerLine) + (x >> 1);
if ((x & 0x1) == 1) {
theByte = data[index] & 0xFF;
pixels[i] = theByte & 0x0F;
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
while (n > 1) {
theByte = data[index] & 0xFF;
pixels[i] = theByte >> 4;
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
pixels[i] = theByte & 0x0F;
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
}
if (n > 0) {
theByte = data[index] & 0xFF;
pixels[i] = theByte >> 4;
}
return;
case 2:
index = (y * bytesPerLine) + (x >> 2);
theByte = data[index] & 0xFF;
int offset;
while (n > 0) {
offset = 3 - (srcX % 4);
mask = 3 << (offset * 2);
pixels[i] = (byte)((theByte & mask) >> (offset * 2));
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
if (n > 0) theByte = data[index] & 0xFF;
srcX = 0;
} else {
if (offset == 0) {
index++;
theByte = data[index] & 0xFF;
}
}
}
return;
case 1:
index = (y * bytesPerLine) + (x >> 3);
theByte = data[index] & 0xFF;
while (n > 0) {
mask = 1 << (7 - (srcX & 0x7));
if ((theByte & mask) == 0) {
pixels[i] = 0;
} else {
pixels[i] = 1;
}
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
if (n > 0) theByte = data[index] & 0xFF;
srcX = 0;
} else {
if (mask == 1) {
index++;
if (n > 0) theByte = data[index] & 0xFF;
}
}
}
return;
}
SWT.error(SWT.ERROR_UNSUPPORTED_DEPTH);
}
/**
* Returns an array of RGB
s which comprise the
* indexed color table of the receiver, or null if the receiver
* has a direct color model.
*
* @return the RGB values for the image or null if direct color
*
* @see PaletteData#getRGBs()
*/
public RGB[] getRGBs() {
return palette.getRGBs();
}
/**
* Returns an ImageData
which specifies the
* transparency mask information for the receiver. If the
* receiver has no transparency or is not an icon, returns
* an opaque mask.
*
* @return the transparency mask
*/
public ImageData getTransparencyMask() {
int transparencyType = getTransparencyType();
switch (transparencyType) {
case SWT.TRANSPARENCY_ALPHA: return getTransparencyMaskFromAlphaData();
case SWT.TRANSPARENCY_MASK: return new ImageData(width, height, 1, bwPalette(), maskPad, maskData);
case SWT.TRANSPARENCY_PIXEL: return colorMaskImage(transparentPixel);
default: return colorMaskImage(transparentPixel);
}
}
ImageData getTransparencyMaskFromAlphaData() {
ImageData mask = new ImageData(width, height, 1, bwPalette(), 2, null, 0, null, null, -1, -1, SWT.IMAGE_UNDEFINED, 0, 0, 0, 0);
int offset = 0;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
byte a = alphaData[offset++];
if (a == 0) {
mask.setPixel(x, y, 0);
} else {
mask.setPixel(x, y, 1);
}
}
}
return mask;
}
/**
* Returns the image transparency type, which will be one of
* SWT.TRANSPARENCY_NONE
, SWT.TRANSPARENCY_MASK
,
* SWT.TRANSPARENCY_PIXEL
or SWT.TRANSPARENCY_ALPHA
.
*
* @return the receiver's transparency type
*/
public int getTransparencyType() {
if (maskData != null) return SWT.TRANSPARENCY_MASK;
if (transparentPixel != -1) return SWT.TRANSPARENCY_PIXEL;
if (alphaData != null) return SWT.TRANSPARENCY_ALPHA;
return SWT.TRANSPARENCY_NONE;
}
/**
* Returns the byte order of the receiver.
*
* @return MSB_FIRST or LSB_FIRST
*/
int getByteOrder() {
return depth != 16 ? MSB_FIRST : LSB_FIRST;
}
/**
* Returns a copy of the receiver which has been stretched or
* shrunk to the specified size. If either the width or height
* is negative, the resulting image will be inverted in the
* associated axis.
*
* @param width the width of the new ImageData
* @param height the height of the new ImageData
* @return a scaled copy of the image
*/
public ImageData scaledTo(int width, int height) {
/* Create a destination image with no data */
final boolean flipX = (width < 0);
if (flipX) width = - width;
final boolean flipY = (height < 0);
if (flipY) height = - height;
ImageData dest = new ImageData(
width, height, depth, palette,
scanlinePad, null, 0, null,
null, -1, transparentPixel, type,
x, y, disposalMethod, delayTime);
/* Scale the image contents */
if (palette.isDirect) blit(BLIT_SRC,
this.data, this.depth, this.bytesPerLine, this.getByteOrder(), 0, 0, this.width, this.height, 0, 0, 0,
ALPHA_OPAQUE, null, 0, 0, 0,
dest.data, dest.depth, dest.bytesPerLine, dest.getByteOrder(), 0, 0, dest.width, dest.height, 0, 0, 0,
flipX, flipY);
else blit(BLIT_SRC,
this.data, this.depth, this.bytesPerLine, this.getByteOrder(), 0, 0, this.width, this.height, null, null, null,
ALPHA_OPAQUE, null, 0, 0, 0,
dest.data, dest.depth, dest.bytesPerLine, dest.getByteOrder(), 0, 0, dest.width, dest.height, null, null, null,
flipX, flipY);
/* Scale the image mask or alpha */
if (maskData != null) {
dest.maskPad = this.maskPad;
int destBpl = (dest.width + 7) / 8;
destBpl = (destBpl + (dest.maskPad - 1)) / dest.maskPad * dest.maskPad;
dest.maskData = new byte[destBpl * dest.height];
int srcBpl = (this.width + 7) / 8;
srcBpl = (srcBpl + (this.maskPad - 1)) / this.maskPad * this.maskPad;
blit(BLIT_SRC,
this.maskData, 1, srcBpl, MSB_FIRST, 0, 0, this.width, this.height, null, null, null,
ALPHA_OPAQUE, null, 0, 0, 0,
dest.maskData, 1, destBpl, MSB_FIRST, 0, 0, dest.width, dest.height, null, null, null,
flipX, flipY);
} else if (alpha != -1) {
dest.alpha = this.alpha;
} else if (alphaData != null) {
dest.alphaData = new byte[dest.width * dest.height];
blit(BLIT_SRC,
this.alphaData, 8, this.width, MSB_FIRST, 0, 0, this.width, this.height, null, null, null,
ALPHA_OPAQUE, null, 0, 0, 0,
dest.alphaData, 8, dest.width, MSB_FIRST, 0, 0, dest.width, dest.height, null, null, null,
flipX, flipY);
}
return dest;
}
/**
* Sets the alpha value at offset x
in
* scanline y
in the receiver's alpha data.
* The alpha value must be between 0 (transparent)
* and 255 (opaque).
*
* @param x the x coordinate of the alpha value to set
* @param y the y coordinate of the alpha value to set
* @param alpha the value to set the alpha to
*
* @exception IllegalArgumentException
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
*
*/
public void setAlpha(int x, int y, int alpha) {
if (x >= width || y >= height || x < 0 || y < 0 || alpha < 0 || alpha > 255)
SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (alphaData == null) alphaData = new byte[width * height];
alphaData[y * width + x] = (byte)alpha;
}
/**
* Sets the alpha values starting at offset x
in
* scanline y
in the receiver's alpha data to the
* values from the array alphas
starting at
* startIndex
. The alpha values must be between
* (byte)0
(transparent) and (byte)255
(opaque)
*
* @param x the x coordinate of the pixel to being setting the alpha values
* @param y the y coordinate of the pixel to being setting the alpha values
* @param putWidth the width of the alpha values to set
* @param alphas the alpha values to set
* @param startIndex the index at which to begin setting
*
* @exception IndexOutOfBoundsException if putWidth is too large
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if pixels is null
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
* - ERROR_INVALID_ARGUMENT - if putWidth is negative
*
*/
public void setAlphas(int x, int y, int putWidth, byte[] alphas, int startIndex) {
if (alphas == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
if (putWidth < 0 || x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (putWidth == 0) return;
if (alphaData == null) alphaData = new byte[width * height];
// may throw an IndexOutOfBoundsException
System.arraycopy(alphas, startIndex, alphaData, y * width + x, putWidth);
}
/**
* Sets the pixel value at offset x
in
* scanline y
in the receiver's data.
*
* @param x the x coordinate of the pixel to set
* @param y the y coordinate of the pixel to set
* @param pixelValue the value to set the pixel to
*
* @exception IllegalArgumentException
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
*
* @exception SWTException
* - ERROR_UNSUPPORTED_DEPTH if the depth is not one of 1, 2, 4, 8, 16, 24 or 32
*
*/
public void setPixel(int x, int y, int pixelValue) {
if (x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
int index;
byte theByte;
int mask;
switch (depth) {
case 32:
index = (y * bytesPerLine) + (x * 4);
data[index] = (byte)((pixelValue >> 24) & 0xFF);
data[index + 1] = (byte)((pixelValue >> 16) & 0xFF);
data[index + 2] = (byte)((pixelValue >> 8) & 0xFF);
data[index + 3] = (byte)(pixelValue & 0xFF);
return;
case 24:
index = (y * bytesPerLine) + (x * 3);
data[index] = (byte)((pixelValue >> 16) & 0xFF);
data[index + 1] = (byte)((pixelValue >> 8) & 0xFF);
data[index + 2] = (byte)(pixelValue & 0xFF);
return;
case 16:
index = (y * bytesPerLine) + (x * 2);
data[index + 1] = (byte)((pixelValue >> 8) & 0xFF);
data[index] = (byte)(pixelValue & 0xFF);
return;
case 8:
index = (y * bytesPerLine) + x ;
data[index] = (byte)(pixelValue & 0xFF);
return;
case 4:
index = (y * bytesPerLine) + (x >> 1);
if ((x & 0x1) == 0) {
data[index] = (byte)((data[index] & 0x0F) | ((pixelValue & 0x0F) << 4));
} else {
data[index] = (byte)((data[index] & 0xF0) | (pixelValue & 0x0F));
}
return;
case 2:
index = (y * bytesPerLine) + (x >> 2);
theByte = data[index];
int offset = 3 - (x % 4);
mask = 0xFF ^ (3 << (offset * 2));
data[index] = (byte)((data[index] & mask) | (pixelValue << (offset * 2)));
return;
case 1:
index = (y * bytesPerLine) + (x >> 3);
theByte = data[index];
mask = 1 << (7 - (x & 0x7));
if ((pixelValue & 0x1) == 1) {
data[index] = (byte)(theByte | mask);
} else {
data[index] = (byte)(theByte & (mask ^ -1));
}
return;
}
SWT.error(SWT.ERROR_UNSUPPORTED_DEPTH);
}
/**
* Sets the pixel values starting at offset x
in
* scanline y
in the receiver's data to the
* values from the array pixels
starting at
* startIndex
.
*
* @param x the x position of the pixel to set
* @param y the y position of the pixel to set
* @param putWidth the width of the pixels to set
* @param pixels the pixels to set
* @param startIndex the index at which to begin setting
*
* @exception IndexOutOfBoundsException if putWidth is too large
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if pixels is null
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
* - ERROR_INVALID_ARGUMENT - if putWidth is negative
*
* @exception SWTException
* - ERROR_UNSUPPORTED_DEPTH if the depth is not one of 1, 2, 4, 8
* (For higher depths, use the int[] version of this method.)
*
*/
public void setPixels(int x, int y, int putWidth, byte[] pixels, int startIndex) {
if (pixels == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
if (putWidth < 0 || x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (putWidth == 0) return;
int index;
int theByte;
int mask;
int n = putWidth;
int i = startIndex;
int srcX = x, srcY = y;
switch (depth) {
case 8:
index = (y * bytesPerLine) + x;
for (int j = 0; j < putWidth; j++) {
data[index] = (byte)(pixels[i] & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
return;
case 4:
index = (y * bytesPerLine) + (x >> 1);
boolean high = (x & 0x1) == 0;
while (n > 0) {
theByte = pixels[i] & 0x0F;
if (high) {
data[index] = (byte)((data[index] & 0x0F) | (theByte << 4));
} else {
data[index] = (byte)((data[index] & 0xF0) | theByte);
}
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
high = true;
srcX = 0;
} else {
if (!high) index++;
high = !high;
}
}
return;
case 2:
byte [] masks = { (byte)0xFC, (byte)0xF3, (byte)0xCF, (byte)0x3F };
index = (y * bytesPerLine) + (x >> 2);
int offset = 3 - (x % 4);
while (n > 0) {
theByte = pixels[i] & 0x3;
data[index] = (byte)((data[index] & masks[offset]) | (theByte << (offset * 2)));
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
offset = 0;
srcX = 0;
} else {
if (offset == 0) {
index++;
offset = 3;
} else {
offset--;
}
}
}
return;
case 1:
index = (y * bytesPerLine) + (x >> 3);
while (n > 0) {
mask = 1 << (7 - (srcX & 0x7));
if ((pixels[i] & 0x1) == 1) {
data[index] = (byte)((data[index] & 0xFF) | mask);
} else {
data[index] = (byte)((data[index] & 0xFF) & (mask ^ -1));
}
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
if (mask == 1) {
index++;
}
}
}
return;
}
SWT.error(SWT.ERROR_UNSUPPORTED_DEPTH);
}
/**
* Sets the pixel values starting at offset x
in
* scanline y
in the receiver's data to the
* values from the array pixels
starting at
* startIndex
.
*
* @param x the x position of the pixel to set
* @param y the y position of the pixel to set
* @param putWidth the width of the pixels to set
* @param pixels the pixels to set
* @param startIndex the index at which to begin setting
*
* @exception IndexOutOfBoundsException if putWidth is too large
* @exception IllegalArgumentException
* - ERROR_NULL_ARGUMENT - if pixels is null
* - ERROR_INVALID_ARGUMENT - if x or y is out of bounds
* - ERROR_INVALID_ARGUMENT - if putWidth is negative
*
* @exception SWTException
* - ERROR_UNSUPPORTED_DEPTH if the depth is not one of 1, 2, 4, 8, 16, 24 or 32
*
*/
public void setPixels(int x, int y, int putWidth, int[] pixels, int startIndex) {
if (pixels == null) SWT.error(SWT.ERROR_NULL_ARGUMENT);
if (putWidth < 0 || x >= width || y >= height || x < 0 || y < 0) SWT.error(SWT.ERROR_INVALID_ARGUMENT);
if (putWidth == 0) return;
int index;
int theByte;
int mask;
int n = putWidth;
int i = startIndex;
int pixel;
int srcX = x, srcY = y;
switch (depth) {
case 32:
index = (y * bytesPerLine) + (x * 4);
for (int j = 0; j < putWidth; j++) {
pixel = pixels[i];
data[index] = (byte)((pixel >> 24) & 0xFF);
data[index + 1] = (byte)((pixel >> 16) & 0xFF);
data[index + 2] = (byte)((pixel >> 8) & 0xFF);
data[index + 3] = (byte)(pixel & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index += 4;
}
}
return;
case 24:
index = (y * bytesPerLine) + (x * 3);
for (int j = 0; j < putWidth; j++) {
pixel = pixels[i];
data[index] = (byte)((pixel >> 16) & 0xFF);
data[index + 1] = (byte)((pixel >> 8) & 0xFF);
data[index + 2] = (byte)(pixel & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index += 3;
}
}
return;
case 16:
index = (y * bytesPerLine) + (x * 2);
for (int j = 0; j < putWidth; j++) {
pixel = pixels[i];
data[index] = (byte)(pixel & 0xFF);
data[index + 1] = (byte)((pixel >> 8) & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index += 2;
}
}
return;
case 8:
index = (y * bytesPerLine) + x;
for (int j = 0; j < putWidth; j++) {
data[index] = (byte)(pixels[i] & 0xFF);
i++;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
index++;
}
}
return;
case 4:
index = (y * bytesPerLine) + (x >> 1);
boolean high = (x & 0x1) == 0;
while (n > 0) {
theByte = pixels[i] & 0x0F;
if (high) {
data[index] = (byte)((data[index] & 0x0F) | (theByte << 4));
} else {
data[index] = (byte)((data[index] & 0xF0) | theByte);
}
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
high = true;
srcX = 0;
} else {
if (!high) index++;
high = !high;
}
}
return;
case 2:
byte [] masks = { (byte)0xFC, (byte)0xF3, (byte)0xCF, (byte)0x3F };
index = (y * bytesPerLine) + (x >> 2);
int offset = 3 - (x % 4);
while (n > 0) {
theByte = pixels[i] & 0x3;
data[index] = (byte)((data[index] & masks[offset]) | (theByte << (offset * 2)));
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
offset = 3;
srcX = 0;
} else {
if (offset == 0) {
index++;
offset = 3;
} else {
offset--;
}
}
}
return;
case 1:
index = (y * bytesPerLine) + (x >> 3);
while (n > 0) {
mask = 1 << (7 - (srcX & 0x7));
if ((pixels[i] & 0x1) == 1) {
data[index] = (byte)((data[index] & 0xFF) | mask);
} else {
data[index] = (byte)((data[index] & 0xFF) & (mask ^ -1));
}
i++;
n--;
srcX++;
if (srcX >= width) {
srcY++;
index = srcY * bytesPerLine;
srcX = 0;
} else {
if (mask == 1) {
index++;
}
}
}
return;
}
SWT.error(SWT.ERROR_UNSUPPORTED_DEPTH);
}
/**
* Returns a palette with 2 colors: black & white.
*/
static PaletteData bwPalette() {
return new PaletteData(new RGB(0, 0, 0), new RGB(255, 255, 255));
}
/**
* Gets the offset of the most significant bit for
* the given mask.
*/
static int getMSBOffset(int mask) {
for (int i = 31; i >= 0; i--) {
if (((mask >> i) & 0x1) != 0) return i + 1;
}
return 0;
}
/**
* Finds the closest match.
*/
static int closestMatch(int depth, byte red, byte green, byte blue, int redMask, int greenMask, int blueMask, byte[] reds, byte[] greens, byte[] blues) {
if (depth > 8) {
int rshift = 32 - getMSBOffset(redMask);
int gshift = 32 - getMSBOffset(greenMask);
int bshift = 32 - getMSBOffset(blueMask);
return (((red << 24) >>> rshift) & redMask) |
(((green << 24) >>> gshift) & greenMask) |
(((blue << 24) >>> bshift) & blueMask);
}
int r, g, b;
int minDistance = 0x7fffffff;
int nearestPixel = 0;
int n = reds.length;
for (int j = 0; j < n; j++) {
r = (reds[j] & 0xFF) - (red & 0xFF);
g = (greens[j] & 0xFF) - (green & 0xFF);
b = (blues[j] & 0xFF) - (blue & 0xFF);
int distance = r*r + g*g + b*b;
if (distance < minDistance) {
nearestPixel = j;
if (distance == 0) break;
minDistance = distance;
}
}
return nearestPixel;
}
static ImageData convertMask(ImageData mask) {
if (mask.depth == 1) return mask;
PaletteData palette = new PaletteData(new RGB(0, 0, 0), new RGB(255,255,255));
ImageData newMask = new ImageData(mask.width, mask.height, 1, palette);
/* Find index of black in mask palette */
int blackIndex = 0;
RGB[] rgbs = mask.getRGBs();
if (rgbs != null) {
while (blackIndex < rgbs.length) {
if (rgbs[blackIndex].equals(palette.colors[0])) break;
blackIndex++;
}
}
int[] pixels = new int[mask.width];
for (int y = 0; y < mask.height; y++) {
mask.getPixels(0, y, mask.width, pixels, 0);
for (int i = 0; i < pixels.length; i++) {
if (pixels[i] == blackIndex) {
pixels[i] = 0;
} else {
pixels[i] = 1;
}
}
newMask.setPixels(0, y, mask.width, pixels, 0);
}
return newMask;
}
static byte[] convertPad(byte[] data, int width, int height, int depth, int pad, int newPad) {
if (pad == newPad) return data;
int stride = (width * depth + 7) / 8;
int bpl = (stride + (pad - 1)) / pad * pad;
int newBpl = (stride + (newPad - 1)) / newPad * newPad;
byte[] newData = new byte[height * newBpl];
int srcIndex = 0, destIndex = 0;
for (int y = 0; y < height; y++) {
System.arraycopy(data, srcIndex, newData, destIndex, stride);
srcIndex += bpl;
destIndex += newBpl;
}
return newData;
}
/**
* Blit operation bits to be OR'ed together to specify the desired operation.
*/
static final int
BLIT_SRC = 1, // copy source directly, else applies logic operations
BLIT_ALPHA = 2, // enable alpha blending
BLIT_DITHER = 4; // enable dithering in low color modes
/**
* Alpha mode, values 0 - 255 specify global alpha level
*/
static final int
ALPHA_OPAQUE = 255, // Fully opaque (ignores any alpha data)
ALPHA_TRANSPARENT = 0, // Fully transparent (ignores any alpha data)
ALPHA_CHANNEL_SEPARATE = -1, // Use alpha channel from separate alphaData
ALPHA_CHANNEL_SOURCE = -2, // Use alpha channel embedded in sourceData
ALPHA_MASK_UNPACKED = -3, // Use transparency mask formed by bytes in alphaData (non-zero is opaque)
ALPHA_MASK_PACKED = -4, // Use transparency mask formed by packed bits in alphaData
ALPHA_MASK_INDEX = -5, // Consider source palette indices transparent if in alphaData array
ALPHA_MASK_RGB = -6; // Consider source RGBs transparent if in RGB888 format alphaData array
/**
* Byte and bit order constants.
*/
static final int LSB_FIRST = 0;
static final int MSB_FIRST = 1;
/**
* Data types (internal)
*/
private static final int
// direct / true color formats with arbitrary masks & shifts
TYPE_GENERIC_8 = 0,
TYPE_GENERIC_16_MSB = 1,
TYPE_GENERIC_16_LSB = 2,
TYPE_GENERIC_24 = 3,
TYPE_GENERIC_32_MSB = 4,
TYPE_GENERIC_32_LSB = 5,
// palette indexed color formats
TYPE_INDEX_8 = 6,
TYPE_INDEX_4 = 7,
TYPE_INDEX_2 = 8,
TYPE_INDEX_1_MSB = 9,
TYPE_INDEX_1_LSB = 10;
/**
* Blits a direct palette image into a direct palette image.
*
* Note: When the source and destination depth, order and masks
* are pairwise equal and the blitter operation is BLIT_SRC,
* the masks are ignored. Hence when not changing the image
* data format, 0 may be specified for the masks.
*
*
* @param op the blitter operation: a combination of BLIT_xxx flags
* (see BLIT_xxx constants)
* @param srcData the source byte array containing image data
* @param srcDepth the source depth: one of 8, 16, 24, 32
* @param srcStride the source number of bytes per line
* @param srcOrder the source byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if srcDepth is not 16 or 32
* @param srcX the top-left x-coord of the source blit region
* @param srcY the top-left y-coord of the source blit region
* @param srcWidth the width of the source blit region
* @param srcHeight the height of the source blit region
* @param srcRedMask the source red channel mask
* @param srcGreenMask the source green channel mask
* @param srcBlueMask the source blue channel mask
* @param alphaMode the alpha blending or mask mode, may be
* an integer 0-255 for global alpha; ignored if BLIT_ALPHA
* not specified in the blitter operations
* (see ALPHA_MODE_xxx constants)
* @param alphaData the alpha blending or mask data, varies depending
* on the value of alphaMode and sometimes ignored
* @param alphaStride the alpha data number of bytes per line
* @param alphaX the top-left x-coord of the alpha blit region
* @param alphaY the top-left y-coord of the alpha blit region
* @param destData the destination byte array containing image data
* @param destDepth the destination depth: one of 8, 16, 24, 32
* @param destStride the destination number of bytes per line
* @param destOrder the destination byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if destDepth is not 16 or 32
* @param destX the top-left x-coord of the destination blit region
* @param destY the top-left y-coord of the destination blit region
* @param destWidth the width of the destination blit region
* @param destHeight the height of the destination blit region
* @param destRedMask the destination red channel mask
* @param destGreenMask the destination green channel mask
* @param destBlueMask the destination blue channel mask
* @param flipX if true the resulting image is flipped along the vertical axis
* @param flipY if true the resulting image is flipped along the horizontal axis
*/
static void blit(int op,
byte[] srcData, int srcDepth, int srcStride, int srcOrder,
int srcX, int srcY, int srcWidth, int srcHeight,
int srcRedMask, int srcGreenMask, int srcBlueMask,
int alphaMode, byte[] alphaData, int alphaStride, int alphaX, int alphaY,
byte[] destData, int destDepth, int destStride, int destOrder,
int destX, int destY, int destWidth, int destHeight,
int destRedMask, int destGreenMask, int destBlueMask,
boolean flipX, boolean flipY) {
if ((destWidth <= 0) || (destHeight <= 0) || (alphaMode == ALPHA_TRANSPARENT)) return;
// these should be supplied as params later
int srcAlphaMask = 0, destAlphaMask = 0;
/*** Prepare scaling data ***/
final int dwm1 = destWidth - 1;
final int sfxi = (dwm1 != 0) ? (int)((((long)srcWidth << 16) - 1) / dwm1) : 0;
final int dhm1 = destHeight - 1;
final int sfyi = (dhm1 != 0) ? (int)((((long)srcHeight << 16) - 1) / dhm1) : 0;
/*** Prepare source-related data ***/
final int sbpp, stype;
switch (srcDepth) {
case 8:
sbpp = 1;
stype = TYPE_GENERIC_8;
break;
case 16:
sbpp = 2;
stype = (srcOrder == MSB_FIRST) ? TYPE_GENERIC_16_MSB : TYPE_GENERIC_16_LSB;
break;
case 24:
sbpp = 3;
stype = TYPE_GENERIC_24;
break;
case 32:
sbpp = 4;
stype = (srcOrder == MSB_FIRST) ? TYPE_GENERIC_32_MSB : TYPE_GENERIC_32_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid source type");
return;
}
int spr = srcY * srcStride + srcX * sbpp;
/*** Prepare destination-related data ***/
final int dbpp, dtype;
switch (destDepth) {
case 8:
dbpp = 1;
dtype = TYPE_GENERIC_8;
break;
case 16:
dbpp = 2;
dtype = (destOrder == MSB_FIRST) ? TYPE_GENERIC_16_MSB : TYPE_GENERIC_16_LSB;
break;
case 24:
dbpp = 3;
dtype = TYPE_GENERIC_24;
break;
case 32:
dbpp = 4;
dtype = (destOrder == MSB_FIRST) ? TYPE_GENERIC_32_MSB : TYPE_GENERIC_32_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid destination type");
return;
}
int dpr = ((flipY) ? destY + dhm1 : destY) * destStride + ((flipX) ? destX + dwm1 : destX) * dbpp;
final int dprxi = (flipX) ? -dbpp : dbpp;
final int dpryi = (flipY) ? -destStride : destStride;
/*** Prepare special processing data ***/
int apr;
if ((op & BLIT_ALPHA) != 0) {
switch (alphaMode) {
case ALPHA_MASK_UNPACKED:
case ALPHA_CHANNEL_SEPARATE:
if (alphaData == null) alphaMode = 0x10000;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_PACKED:
if (alphaData == null) alphaMode = 0x10000;
alphaStride <<= 3;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_INDEX:
//throw new IllegalArgumentException("Invalid alpha type");
return;
case ALPHA_MASK_RGB:
if (alphaData == null) alphaMode = 0x10000;
apr = 0;
break;
default:
alphaMode = (alphaMode << 16) / 255; // prescale
case ALPHA_CHANNEL_SOURCE:
apr = 0;
break;
}
} else {
alphaMode = 0x10000;
apr = 0;
}
/*** Blit ***/
int dp = dpr;
int sp = spr;
if ((alphaMode == 0x10000) && (stype == dtype) &&
(srcRedMask == destRedMask) && (srcGreenMask == destGreenMask) &&
(srcBlueMask == destBlueMask) && (srcAlphaMask == destAlphaMask)) {
/*** Fast blit (straight copy) ***/
switch (sbpp) {
case 1:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
destData[dp] = srcData[sp];
sp += (sfx >>> 16);
}
}
break;
case 2:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
destData[dp] = srcData[sp];
destData[dp + 1] = srcData[sp + 1];
sp += (sfx >>> 16) * 2;
}
}
break;
case 3:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
destData[dp] = srcData[sp];
destData[dp + 1] = srcData[sp + 1];
destData[dp + 2] = srcData[sp + 2];
sp += (sfx >>> 16) * 3;
}
}
break;
case 4:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
destData[dp] = srcData[sp];
destData[dp + 1] = srcData[sp + 1];
destData[dp + 2] = srcData[sp + 2];
destData[dp + 3] = srcData[sp + 3];
sp += (sfx >>> 16) * 4;
}
}
break;
}
return;
}
/*Fast 32 to 32 blit */
if (alphaMode == 0x10000 && stype == TYPE_GENERIC_32_MSB && dtype == TYPE_GENERIC_32_MSB) {
if (srcRedMask == 0xFF00 && srcGreenMask == 0xff0000 && srcBlueMask == 0xff000000 && destRedMask == 0xFF0000 && destGreenMask == 0xff00 && destBlueMask == 0xff) {
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
destData[dp] = srcData[sp + 3];
destData[dp + 1] = srcData[sp + 2];
destData[dp + 2] = srcData[sp + 1];
destData[dp + 3] = srcData[sp];
sp += (sfx >>> 16) * 4;
}
}
return;
}
}
/*Fast 24 to 32 blit */
if (alphaMode == 0x10000 && stype == TYPE_GENERIC_24 && dtype == TYPE_GENERIC_32_MSB) {
if (srcRedMask == 0xFF && srcGreenMask == 0xff00 && srcBlueMask == 0xff0000 && destRedMask == 0xFF0000 && destGreenMask == 0xff00 && destBlueMask == 0xff) {
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
destData[dp] = 0;
destData[dp + 1] = srcData[sp + 2];
destData[dp + 2] = srcData[sp + 1];
destData[dp + 3] = srcData[sp];
sp += (sfx >>> 16) * 3;
}
}
return;
}
}
/*** Comprehensive blit (apply transformations) ***/
final int srcRedShift = getChannelShift(srcRedMask);
final byte[] srcReds = ANY_TO_EIGHT[getChannelWidth(srcRedMask, srcRedShift)];
final int srcGreenShift = getChannelShift(srcGreenMask);
final byte[] srcGreens = ANY_TO_EIGHT[getChannelWidth(srcGreenMask, srcGreenShift)];
final int srcBlueShift = getChannelShift(srcBlueMask);
final byte[] srcBlues = ANY_TO_EIGHT[getChannelWidth(srcBlueMask, srcBlueShift)];
final int srcAlphaShift = getChannelShift(srcAlphaMask);
final byte[] srcAlphas = ANY_TO_EIGHT[getChannelWidth(srcAlphaMask, srcAlphaShift)];
final int destRedShift = getChannelShift(destRedMask);
final int destRedWidth = getChannelWidth(destRedMask, destRedShift);
final byte[] destReds = ANY_TO_EIGHT[destRedWidth];
final int destRedPreShift = 8 - destRedWidth;
final int destGreenShift = getChannelShift(destGreenMask);
final int destGreenWidth = getChannelWidth(destGreenMask, destGreenShift);
final byte[] destGreens = ANY_TO_EIGHT[destGreenWidth];
final int destGreenPreShift = 8 - destGreenWidth;
final int destBlueShift = getChannelShift(destBlueMask);
final int destBlueWidth = getChannelWidth(destBlueMask, destBlueShift);
final byte[] destBlues = ANY_TO_EIGHT[destBlueWidth];
final int destBluePreShift = 8 - destBlueWidth;
final int destAlphaShift = getChannelShift(destAlphaMask);
final int destAlphaWidth = getChannelWidth(destAlphaMask, destAlphaShift);
final byte[] destAlphas = ANY_TO_EIGHT[destAlphaWidth];
final int destAlphaPreShift = 8 - destAlphaWidth;
int ap = apr, alpha = alphaMode;
int r = 0, g = 0, b = 0, a = 0;
int rq = 0, gq = 0, bq = 0, aq = 0;
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy,
sp = spr += (sfy >>> 16) * srcStride,
ap = apr += (sfy >>> 16) * alphaStride,
sfy = (sfy & 0xffff) + sfyi,
dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx,
dp += dprxi,
sfx = (sfx & 0xffff) + sfxi) {
/*** READ NEXT PIXEL ***/
switch (stype) {
case TYPE_GENERIC_8: {
final int data = srcData[sp] & 0xff;
sp += (sfx >>> 16);
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_MSB: {
final int data = ((srcData[sp] & 0xff) << 8) | (srcData[sp + 1] & 0xff);
sp += (sfx >>> 16) * 2;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_LSB: {
final int data = ((srcData[sp + 1] & 0xff) << 8) | (srcData[sp] & 0xff);
sp += (sfx >>> 16) * 2;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_24: {
final int data = (( ((srcData[sp] & 0xff) << 8) |
(srcData[sp + 1] & 0xff)) << 8) |
(srcData[sp + 2] & 0xff);
sp += (sfx >>> 16) * 3;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_MSB: {
final int data = (( (( ((srcData[sp] & 0xff) << 8) |
(srcData[sp + 1] & 0xff)) << 8) |
(srcData[sp + 2] & 0xff)) << 8) |
(srcData[sp + 3] & 0xff);
sp += (sfx >>> 16) * 4;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_LSB: {
final int data = (( (( ((srcData[sp + 3] & 0xff) << 8) |
(srcData[sp + 2] & 0xff)) << 8) |
(srcData[sp + 1] & 0xff)) << 8) |
(srcData[sp] & 0xff);
sp += (sfx >>> 16) * 4;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
}
/*** DO SPECIAL PROCESSING IF REQUIRED ***/
switch (alphaMode) {
case ALPHA_CHANNEL_SEPARATE:
alpha = ((alphaData[ap] & 0xff) << 16) / 255;
ap += (sfx >> 16);
break;
case ALPHA_CHANNEL_SOURCE:
alpha = (a << 16) / 255;
break;
case ALPHA_MASK_UNPACKED:
alpha = (alphaData[ap] != 0) ? 0x10000 : 0;
ap += (sfx >> 16);
break;
case ALPHA_MASK_PACKED:
alpha = (alphaData[ap >> 3] << ((ap & 7) + 9)) & 0x10000;
ap += (sfx >> 16);
break;
case ALPHA_MASK_RGB:
alpha = 0x10000;
for (int i = 0; i < alphaData.length; i += 3) {
if ((r == alphaData[i]) && (g == alphaData[i + 1]) && (b == alphaData[i + 2])) {
alpha = 0x0000;
break;
}
}
break;
}
if (alpha != 0x10000) {
if (alpha == 0x0000) continue;
switch (dtype) {
case TYPE_GENERIC_8: {
final int data = destData[dp] & 0xff;
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_MSB: {
final int data = ((destData[dp] & 0xff) << 8) | (destData[dp + 1] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_LSB: {
final int data = ((destData[dp + 1] & 0xff) << 8) | (destData[dp] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_24: {
final int data = (( ((destData[dp] & 0xff) << 8) |
(destData[dp + 1] & 0xff)) << 8) |
(destData[dp + 2] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_MSB: {
final int data = (( (( ((destData[dp] & 0xff) << 8) |
(destData[dp + 1] & 0xff)) << 8) |
(destData[dp + 2] & 0xff)) << 8) |
(destData[dp + 3] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_LSB: {
final int data = (( (( ((destData[dp + 3] & 0xff) << 8) |
(destData[dp + 2] & 0xff)) << 8) |
(destData[dp + 1] & 0xff)) << 8) |
(destData[dp] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
}
// Perform alpha blending
a = aq + ((a - aq) * alpha >> 16);
r = rq + ((r - rq) * alpha >> 16);
g = gq + ((g - gq) * alpha >> 16);
b = bq + ((b - bq) * alpha >> 16);
}
/*** WRITE NEXT PIXEL ***/
final int data =
(r >>> destRedPreShift << destRedShift) |
(g >>> destGreenPreShift << destGreenShift) |
(b >>> destBluePreShift << destBlueShift) |
(a >>> destAlphaPreShift << destAlphaShift);
switch (dtype) {
case TYPE_GENERIC_8: {
destData[dp] = (byte) data;
} break;
case TYPE_GENERIC_16_MSB: {
destData[dp] = (byte) (data >>> 8);
destData[dp + 1] = (byte) (data & 0xff);
} break;
case TYPE_GENERIC_16_LSB: {
destData[dp] = (byte) (data & 0xff);
destData[dp + 1] = (byte) (data >>> 8);
} break;
case TYPE_GENERIC_24: {
destData[dp] = (byte) (data >>> 16);
destData[dp + 1] = (byte) (data >>> 8);
destData[dp + 2] = (byte) (data & 0xff);
} break;
case TYPE_GENERIC_32_MSB: {
destData[dp] = (byte) (data >>> 24);
destData[dp + 1] = (byte) (data >>> 16);
destData[dp + 2] = (byte) (data >>> 8);
destData[dp + 3] = (byte) (data & 0xff);
} break;
case TYPE_GENERIC_32_LSB: {
destData[dp] = (byte) (data & 0xff);
destData[dp + 1] = (byte) (data >>> 8);
destData[dp + 2] = (byte) (data >>> 16);
destData[dp + 3] = (byte) (data >>> 24);
} break;
}
}
}
}
/**
* Blits an index palette image into an index palette image.
*
* Note: The source and destination red, green, and blue
* arrays may be null if no alpha blending or dither is to be
* performed.
*
*
* @param op the blitter operation: a combination of BLIT_xxx flags
* (see BLIT_xxx constants)
* @param srcData the source byte array containing image data
* @param srcDepth the source depth: one of 1, 2, 4, 8
* @param srcStride the source number of bytes per line
* @param srcOrder the source byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if srcDepth is not 1
* @param srcX the top-left x-coord of the source blit region
* @param srcY the top-left y-coord of the source blit region
* @param srcWidth the width of the source blit region
* @param srcHeight the height of the source blit region
* @param srcReds the source palette red component intensities
* @param srcGreens the source palette green component intensities
* @param srcBlues the source palette blue component intensities
* @param alphaMode the alpha blending or mask mode, may be
* an integer 0-255 for global alpha; ignored if BLIT_ALPHA
* not specified in the blitter operations
* (see ALPHA_MODE_xxx constants)
* @param alphaData the alpha blending or mask data, varies depending
* on the value of alphaMode and sometimes ignored
* @param alphaStride the alpha data number of bytes per line
* @param alphaX the top-left x-coord of the alpha blit region
* @param alphaY the top-left y-coord of the alpha blit region
* @param destData the destination byte array containing image data
* @param destDepth the destination depth: one of 1, 2, 4, 8
* @param destStride the destination number of bytes per line
* @param destOrder the destination byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if destDepth is not 1
* @param destX the top-left x-coord of the destination blit region
* @param destY the top-left y-coord of the destination blit region
* @param destWidth the width of the destination blit region
* @param destHeight the height of the destination blit region
* @param destReds the destination palette red component intensities
* @param destGreens the destination palette green component intensities
* @param destBlues the destination palette blue component intensities
* @param flipX if true the resulting image is flipped along the vertical axis
* @param flipY if true the resulting image is flipped along the horizontal axis
*/
static void blit(int op,
byte[] srcData, int srcDepth, int srcStride, int srcOrder,
int srcX, int srcY, int srcWidth, int srcHeight,
byte[] srcReds, byte[] srcGreens, byte[] srcBlues,
int alphaMode, byte[] alphaData, int alphaStride, int alphaX, int alphaY,
byte[] destData, int destDepth, int destStride, int destOrder,
int destX, int destY, int destWidth, int destHeight,
byte[] destReds, byte[] destGreens, byte[] destBlues,
boolean flipX, boolean flipY) {
if ((destWidth <= 0) || (destHeight <= 0) || (alphaMode == ALPHA_TRANSPARENT)) return;
/*** Prepare scaling data ***/
final int dwm1 = destWidth - 1;
final int sfxi = (dwm1 != 0) ? (int)((((long)srcWidth << 16) - 1) / dwm1) : 0;
final int dhm1 = destHeight - 1;
final int sfyi = (dhm1 != 0) ? (int)((((long)srcHeight << 16) - 1) / dhm1) : 0;
/*** Prepare source-related data ***/
final int stype;
switch (srcDepth) {
case 8:
stype = TYPE_INDEX_8;
break;
case 4:
srcStride <<= 1;
stype = TYPE_INDEX_4;
break;
case 2:
srcStride <<= 2;
stype = TYPE_INDEX_2;
break;
case 1:
srcStride <<= 3;
stype = (srcOrder == MSB_FIRST) ? TYPE_INDEX_1_MSB : TYPE_INDEX_1_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid source type");
return;
}
int spr = srcY * srcStride + srcX;
/*** Prepare destination-related data ***/
final int dtype;
switch (destDepth) {
case 8:
dtype = TYPE_INDEX_8;
break;
case 4:
destStride <<= 1;
dtype = TYPE_INDEX_4;
break;
case 2:
destStride <<= 2;
dtype = TYPE_INDEX_2;
break;
case 1:
destStride <<= 3;
dtype = (destOrder == MSB_FIRST) ? TYPE_INDEX_1_MSB : TYPE_INDEX_1_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid source type");
return;
}
int dpr = ((flipY) ? destY + dhm1 : destY) * destStride + ((flipX) ? destX + dwm1 : destX);
final int dprxi = (flipX) ? -1 : 1;
final int dpryi = (flipY) ? -destStride : destStride;
/*** Prepare special processing data ***/
int apr;
if ((op & BLIT_ALPHA) != 0) {
switch (alphaMode) {
case ALPHA_MASK_UNPACKED:
case ALPHA_CHANNEL_SEPARATE:
if (alphaData == null) alphaMode = 0x10000;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_PACKED:
if (alphaData == null) alphaMode = 0x10000;
alphaStride <<= 3;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_INDEX:
case ALPHA_MASK_RGB:
if (alphaData == null) alphaMode = 0x10000;
apr = 0;
break;
default:
alphaMode = (alphaMode << 16) / 255; // prescale
case ALPHA_CHANNEL_SOURCE:
apr = 0;
break;
}
} else {
alphaMode = 0x10000;
apr = 0;
}
final boolean ditherEnabled = (op & BLIT_DITHER) != 0;
/*** Blit ***/
int dp = dpr;
int sp = spr;
int ap = apr;
int destPaletteSize = 1 << destDepth;
if ((destReds != null) && (destReds.length < destPaletteSize)) destPaletteSize = destReds.length;
byte[] paletteMapping = null;
boolean isExactPaletteMapping = true;
switch (alphaMode) {
case 0x10000:
/*** If the palettes and formats are equivalent use a one-to-one mapping ***/
if ((stype == dtype) &&
(srcReds == destReds) && (srcGreens == destGreens) && (srcBlues == destBlues)) {
paletteMapping = ONE_TO_ONE_MAPPING;
break;
/*** If palettes have not been supplied, supply a suitable mapping ***/
} else if ((srcReds == null) || (destReds == null)) {
if (srcDepth <= destDepth) {
paletteMapping = ONE_TO_ONE_MAPPING;
} else {
paletteMapping = new byte[1 << srcDepth];
int mask = (0xff << destDepth) >>> 8;
for (int i = 0; i < paletteMapping.length; ++i) paletteMapping[i] = (byte)(i & mask);
}
break;
}
case ALPHA_MASK_UNPACKED:
case ALPHA_MASK_PACKED:
case ALPHA_MASK_INDEX:
case ALPHA_MASK_RGB:
/*** Generate a palette mapping ***/
int srcPaletteSize = 1 << srcDepth;
paletteMapping = new byte[srcPaletteSize];
if ((srcReds != null) && (srcReds.length < srcPaletteSize)) srcPaletteSize = srcReds.length;
for (int i = 0, r, g, b, index; i < srcPaletteSize; ++i) {
r = srcReds[i] & 0xff;
g = srcGreens[i] & 0xff;
b = srcBlues[i] & 0xff;
index = 0;
int minDistance = 0x7fffffff;
for (int j = 0, dr, dg, db, distance; j < destPaletteSize; ++j) {
dr = (destReds[j] & 0xff) - r;
dg = (destGreens[j] & 0xff) - g;
db = (destBlues[j] & 0xff) - b;
distance = dr * dr + dg * dg + db * db;
if (distance < minDistance) {
index = j;
if (distance == 0) break;
minDistance = distance;
}
}
paletteMapping[i] = (byte)index;
if (minDistance != 0) isExactPaletteMapping = false;
}
break;
}
if ((paletteMapping != null) && (isExactPaletteMapping || ! ditherEnabled)) {
if ((stype == dtype) && (alphaMode == 0x10000)) {
/*** Fast blit (copy w/ mapping) ***/
switch (stype) {
case TYPE_INDEX_8:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
destData[dp] = paletteMapping[srcData[sp] & 0xff];
sp += (sfx >>> 16);
}
}
break;
case TYPE_INDEX_4:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
final int v;
if ((sp & 1) != 0) v = paletteMapping[srcData[sp >> 1] & 0x0f];
else v = (srcData[sp >> 1] >>> 4) & 0x0f;
sp += (sfx >>> 16);
if ((dp & 1) != 0) destData[dp >> 1] = (byte)((destData[dp >> 1] & 0xf0) | v);
else destData[dp >> 1] = (byte)((destData[dp >> 1] & 0x0f) | (v << 4));
}
}
break;
case TYPE_INDEX_2:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
final int index = paletteMapping[(srcData[sp >> 2] >>> (6 - (sp & 3) * 2)) & 0x03];
sp += (sfx >>> 16);
final int shift = 6 - (dp & 3) * 2;
destData[dp >> 2] = (byte)(destData[dp >> 2] & ~(0x03 << shift) | (index << shift));
}
}
break;
case TYPE_INDEX_1_MSB:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
final int index = paletteMapping[(srcData[sp >> 3] >>> (7 - (sp & 7))) & 0x01];
sp += (sfx >>> 16);
final int shift = 7 - (dp & 7);
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (index << shift));
}
}
break;
case TYPE_INDEX_1_LSB:
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy, sp = spr += (sfy >>> 16) * srcStride, sfy = (sfy & 0xffff) + sfyi, dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx, dp += dprxi, sfx = (sfx & 0xffff) + sfxi) {
final int index = paletteMapping[(srcData[sp >> 3] >>> (sp & 7)) & 0x01];
sp += (sfx >>> 16);
final int shift = dp & 7;
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (index << shift));
}
}
break;
}
} else {
/*** Convert between indexed modes using mapping and mask ***/
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy,
sp = spr += (sfy >>> 16) * srcStride,
sfy = (sfy & 0xffff) + sfyi,
dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx,
dp += dprxi,
sfx = (sfx & 0xffff) + sfxi) {
int index;
/*** READ NEXT PIXEL ***/
switch (stype) {
case TYPE_INDEX_8:
index = srcData[sp] & 0xff;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_4:
if ((sp & 1) != 0) index = srcData[sp >> 1] & 0x0f;
else index = (srcData[sp >> 1] >>> 4) & 0x0f;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_2:
index = (srcData[sp >> 2] >>> (6 - (sp & 3) * 2)) & 0x03;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_1_MSB:
index = (srcData[sp >> 3] >>> (7 - (sp & 7))) & 0x01;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_1_LSB:
index = (srcData[sp >> 3] >>> (sp & 7)) & 0x01;
sp += (sfx >>> 16);
break;
default:
return;
}
/*** APPLY MASK ***/
switch (alphaMode) {
case ALPHA_MASK_UNPACKED: {
final byte mask = alphaData[ap];
ap += (sfx >> 16);
if (mask == 0) continue;
} break;
case ALPHA_MASK_PACKED: {
final int mask = alphaData[ap >> 3] & (1 << (ap & 7));
ap += (sfx >> 16);
if (mask == 0) continue;
} break;
case ALPHA_MASK_INDEX: {
int i = 0;
while (i < alphaData.length) {
if (index == (alphaData[i] & 0xff)) break;
}
if (i < alphaData.length) continue;
} break;
case ALPHA_MASK_RGB: {
final byte r = srcReds[index], g = srcGreens[index], b = srcBlues[index];
int i = 0;
while (i < alphaData.length) {
if ((r == alphaData[i]) && (g == alphaData[i + 1]) && (b == alphaData[i + 2])) break;
i += 3;
}
if (i < alphaData.length) continue;
} break;
}
index = paletteMapping[index] & 0xff;
/*** WRITE NEXT PIXEL ***/
switch (dtype) {
case TYPE_INDEX_8:
destData[dp] = (byte) index;
break;
case TYPE_INDEX_4:
if ((dp & 1) != 0) destData[dp >> 1] = (byte)((destData[dp >> 1] & 0xf0) | index);
else destData[dp >> 1] = (byte)((destData[dp >> 1] & 0x0f) | (index << 4));
break;
case TYPE_INDEX_2: {
final int shift = 6 - (dp & 3) * 2;
destData[dp >> 2] = (byte)(destData[dp >> 2] & ~(0x03 << shift) | (index << shift));
} break;
case TYPE_INDEX_1_MSB: {
final int shift = 7 - (dp & 7);
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (index << shift));
} break;
case TYPE_INDEX_1_LSB: {
final int shift = dp & 7;
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (index << shift));
} break;
}
}
}
}
return;
}
/*** Comprehensive blit (apply transformations) ***/
int alpha = alphaMode;
int index = 0;
int indexq = 0;
int lastindex = 0, lastr = -1, lastg = -1, lastb = -1;
final int[] rerr, gerr, berr;
if (ditherEnabled) {
rerr = new int[destWidth + 2];
gerr = new int[destWidth + 2];
berr = new int[destWidth + 2];
} else {
rerr = null; gerr = null; berr = null;
}
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy,
sp = spr += (sfy >>> 16) * srcStride,
ap = apr += (sfy >>> 16) * alphaStride,
sfy = (sfy & 0xffff) + sfyi,
dp = dpr += dpryi) {
int lrerr = 0, lgerr = 0, lberr = 0;
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx,
dp += dprxi,
sfx = (sfx & 0xffff) + sfxi) {
/*** READ NEXT PIXEL ***/
switch (stype) {
case TYPE_INDEX_8:
index = srcData[sp] & 0xff;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_4:
if ((sp & 1) != 0) index = srcData[sp >> 1] & 0x0f;
else index = (srcData[sp >> 1] >>> 4) & 0x0f;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_2:
index = (srcData[sp >> 2] >>> (6 - (sp & 3) * 2)) & 0x03;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_1_MSB:
index = (srcData[sp >> 3] >>> (7 - (sp & 7))) & 0x01;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_1_LSB:
index = (srcData[sp >> 3] >>> (sp & 7)) & 0x01;
sp += (sfx >>> 16);
break;
}
/*** DO SPECIAL PROCESSING IF REQUIRED ***/
int r = srcReds[index] & 0xff, g = srcGreens[index] & 0xff, b = srcBlues[index] & 0xff;
switch (alphaMode) {
case ALPHA_CHANNEL_SEPARATE:
alpha = ((alphaData[ap] & 0xff) << 16) / 255;
ap += (sfx >> 16);
break;
case ALPHA_MASK_UNPACKED:
alpha = (alphaData[ap] != 0) ? 0x10000 : 0;
ap += (sfx >> 16);
break;
case ALPHA_MASK_PACKED:
alpha = (alphaData[ap >> 3] << ((ap & 7) + 9)) & 0x10000;
ap += (sfx >> 16);
break;
case ALPHA_MASK_INDEX: { // could speed up using binary search if we sorted the indices
int i = 0;
while (i < alphaData.length) {
if (index == (alphaData[i] & 0xff)) break;
}
if (i < alphaData.length) continue;
} break;
case ALPHA_MASK_RGB: {
int i = 0;
while (i < alphaData.length) {
if ((r == (alphaData[i] & 0xff)) &&
(g == (alphaData[i + 1] & 0xff)) &&
(b == (alphaData[i + 2] & 0xff))) break;
i += 3;
}
if (i < alphaData.length) continue;
} break;
}
if (alpha != 0x10000) {
if (alpha == 0x0000) continue;
switch (dtype) {
case TYPE_INDEX_8:
indexq = destData[dp] & 0xff;
break;
case TYPE_INDEX_4:
if ((dp & 1) != 0) indexq = destData[dp >> 1] & 0x0f;
else indexq = (destData[dp >> 1] >>> 4) & 0x0f;
break;
case TYPE_INDEX_2:
indexq = (destData[dp >> 2] >>> (6 - (dp & 3) * 2)) & 0x03;
break;
case TYPE_INDEX_1_MSB:
indexq = (destData[dp >> 3] >>> (7 - (dp & 7))) & 0x01;
break;
case TYPE_INDEX_1_LSB:
indexq = (destData[dp >> 3] >>> (dp & 7)) & 0x01;
break;
}
// Perform alpha blending
final int rq = destReds[indexq] & 0xff;
final int gq = destGreens[indexq] & 0xff;
final int bq = destBlues[indexq] & 0xff;
r = rq + ((r - rq) * alpha >> 16);
g = gq + ((g - gq) * alpha >> 16);
b = bq + ((b - bq) * alpha >> 16);
}
/*** MAP COLOR TO THE PALETTE ***/
if (ditherEnabled) {
// Floyd-Steinberg error diffusion
r += rerr[dx] >> 4;
if (r < 0) r = 0; else if (r > 255) r = 255;
g += gerr[dx] >> 4;
if (g < 0) g = 0; else if (g > 255) g = 255;
b += berr[dx] >> 4;
if (b < 0) b = 0; else if (b > 255) b = 255;
rerr[dx] = lrerr;
gerr[dx] = lgerr;
berr[dx] = lberr;
}
if (r != lastr || g != lastg || b != lastb) {
// moving the variable declarations out seems to make the JDK JIT happier...
for (int j = 0, dr, dg, db, distance, minDistance = 0x7fffffff; j < destPaletteSize; ++j) {
dr = (destReds[j] & 0xff) - r;
dg = (destGreens[j] & 0xff) - g;
db = (destBlues[j] & 0xff) - b;
distance = dr * dr + dg * dg + db * db;
if (distance < minDistance) {
lastindex = j;
if (distance == 0) break;
minDistance = distance;
}
}
lastr = r; lastg = g; lastb = b;
}
if (ditherEnabled) {
// Floyd-Steinberg error diffusion, cont'd...
final int dxm1 = dx - 1, dxp1 = dx + 1;
int acc;
rerr[dxp1] += acc = (lrerr = r - (destReds[lastindex] & 0xff)) + lrerr + lrerr;
rerr[dx] += acc += lrerr + lrerr;
rerr[dxm1] += acc + lrerr + lrerr;
gerr[dxp1] += acc = (lgerr = g - (destGreens[lastindex] & 0xff)) + lgerr + lgerr;
gerr[dx] += acc += lgerr + lgerr;
gerr[dxm1] += acc + lgerr + lgerr;
berr[dxp1] += acc = (lberr = b - (destBlues[lastindex] & 0xff)) + lberr + lberr;
berr[dx] += acc += lberr + lberr;
berr[dxm1] += acc + lberr + lberr;
}
/*** WRITE NEXT PIXEL ***/
switch (dtype) {
case TYPE_INDEX_8:
destData[dp] = (byte) lastindex;
break;
case TYPE_INDEX_4:
if ((dp & 1) != 0) destData[dp >> 1] = (byte)((destData[dp >> 1] & 0xf0) | lastindex);
else destData[dp >> 1] = (byte)((destData[dp >> 1] & 0x0f) | (lastindex << 4));
break;
case TYPE_INDEX_2: {
final int shift = 6 - (dp & 3) * 2;
destData[dp >> 2] = (byte)(destData[dp >> 2] & ~(0x03 << shift) | (lastindex << shift));
} break;
case TYPE_INDEX_1_MSB: {
final int shift = 7 - (dp & 7);
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (lastindex << shift));
} break;
case TYPE_INDEX_1_LSB: {
final int shift = dp & 7;
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (lastindex << shift));
} break;
}
}
}
}
/**
* Blits an index palette image into a direct palette image.
*
* Note: The source and destination masks and palettes must
* always be fully specified.
*
*
* @param op the blitter operation: a combination of BLIT_xxx flags
* (see BLIT_xxx constants)
* @param srcData the source byte array containing image data
* @param srcDepth the source depth: one of 1, 2, 4, 8
* @param srcStride the source number of bytes per line
* @param srcOrder the source byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if srcDepth is not 1
* @param srcX the top-left x-coord of the source blit region
* @param srcY the top-left y-coord of the source blit region
* @param srcWidth the width of the source blit region
* @param srcHeight the height of the source blit region
* @param srcReds the source palette red component intensities
* @param srcGreens the source palette green component intensities
* @param srcBlues the source palette blue component intensities
* @param alphaMode the alpha blending or mask mode, may be
* an integer 0-255 for global alpha; ignored if BLIT_ALPHA
* not specified in the blitter operations
* (see ALPHA_MODE_xxx constants)
* @param alphaData the alpha blending or mask data, varies depending
* on the value of alphaMode and sometimes ignored
* @param alphaStride the alpha data number of bytes per line
* @param alphaX the top-left x-coord of the alpha blit region
* @param alphaY the top-left y-coord of the alpha blit region
* @param destData the destination byte array containing image data
* @param destDepth the destination depth: one of 8, 16, 24, 32
* @param destStride the destination number of bytes per line
* @param destOrder the destination byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if destDepth is not 16 or 32
* @param destX the top-left x-coord of the destination blit region
* @param destY the top-left y-coord of the destination blit region
* @param destWidth the width of the destination blit region
* @param destHeight the height of the destination blit region
* @param destRedMask the destination red channel mask
* @param destGreenMask the destination green channel mask
* @param destBlueMask the destination blue channel mask
* @param flipX if true the resulting image is flipped along the vertical axis
* @param flipY if true the resulting image is flipped along the horizontal axis
*/
static void blit(int op,
byte[] srcData, int srcDepth, int srcStride, int srcOrder,
int srcX, int srcY, int srcWidth, int srcHeight,
byte[] srcReds, byte[] srcGreens, byte[] srcBlues,
int alphaMode, byte[] alphaData, int alphaStride, int alphaX, int alphaY,
byte[] destData, int destDepth, int destStride, int destOrder,
int destX, int destY, int destWidth, int destHeight,
int destRedMask, int destGreenMask, int destBlueMask,
boolean flipX, boolean flipY) {
if ((destWidth <= 0) || (destHeight <= 0) || (alphaMode == ALPHA_TRANSPARENT)) return;
/*** Fast blit (straight copy) ***/
if (srcX == 0 && srcY == 0 && destX == 0 && destY == 0 && destWidth == srcWidth && destHeight == srcHeight) {
if (destDepth == 24 && srcDepth == 8 && (op & BLIT_ALPHA) == 0 && destRedMask == 0xFF0000 && destGreenMask == 0xFF00 && destBlueMask == 0xFF) {
for (int y = 0, sp = 0, dp = 0, spad = srcStride - srcWidth, dpad = destStride - (destWidth * 3); y < destHeight; y++, sp += spad, dp += dpad) {
for (int x = 0; x < destWidth; x++) {
int index = srcData[sp++] & 0xff;
destData[dp++] = srcReds[index];
destData[dp++] = srcGreens[index];
destData[dp++] = srcBlues[index];
}
}
return;
}
if (destDepth == 32 && destOrder == MSB_FIRST && srcDepth == 8 && (op & BLIT_ALPHA) == 0 && destRedMask == 0xFF0000 && destGreenMask == 0xFF00 && destBlueMask == 0xFF) {
for (int y = 0, sp = 0, dp = 0, spad = srcStride - srcWidth, dpad = destStride - (destWidth * 4); y < destHeight; y++, sp += spad, dp += dpad) {
for (int x = 0; x < destWidth; x++) {
int index = srcData[sp++] & 0xff;
dp++;
destData[dp++] = srcReds[index];
destData[dp++] = srcGreens[index];
destData[dp++] = srcBlues[index];
}
}
return;
}
}
// these should be supplied as params later
final int destAlphaMask = 0;
/*** Prepare scaling data ***/
final int dwm1 = destWidth - 1;
final int sfxi = (dwm1 != 0) ? (int)((((long)srcWidth << 16) - 1) / dwm1) : 0;
final int dhm1 = destHeight - 1;
final int sfyi = (dhm1 != 0) ? (int)((((long)srcHeight << 16) - 1) / dhm1) : 0;
/*** Prepare source-related data ***/
final int stype;
switch (srcDepth) {
case 8:
stype = TYPE_INDEX_8;
break;
case 4:
srcStride <<= 1;
stype = TYPE_INDEX_4;
break;
case 2:
srcStride <<= 2;
stype = TYPE_INDEX_2;
break;
case 1:
srcStride <<= 3;
stype = (srcOrder == MSB_FIRST) ? TYPE_INDEX_1_MSB : TYPE_INDEX_1_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid source type");
return;
}
int spr = srcY * srcStride + srcX;
/*** Prepare destination-related data ***/
final int dbpp, dtype;
switch (destDepth) {
case 8:
dbpp = 1;
dtype = TYPE_GENERIC_8;
break;
case 16:
dbpp = 2;
dtype = (destOrder == MSB_FIRST) ? TYPE_GENERIC_16_MSB : TYPE_GENERIC_16_LSB;
break;
case 24:
dbpp = 3;
dtype = TYPE_GENERIC_24;
break;
case 32:
dbpp = 4;
dtype = (destOrder == MSB_FIRST) ? TYPE_GENERIC_32_MSB : TYPE_GENERIC_32_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid destination type");
return;
}
int dpr = ((flipY) ? destY + dhm1 : destY) * destStride + ((flipX) ? destX + dwm1 : destX) * dbpp;
final int dprxi = (flipX) ? -dbpp : dbpp;
final int dpryi = (flipY) ? -destStride : destStride;
/*** Prepare special processing data ***/
int apr;
if ((op & BLIT_ALPHA) != 0) {
switch (alphaMode) {
case ALPHA_MASK_UNPACKED:
case ALPHA_CHANNEL_SEPARATE:
if (alphaData == null) alphaMode = 0x10000;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_PACKED:
if (alphaData == null) alphaMode = 0x10000;
alphaStride <<= 3;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_INDEX:
case ALPHA_MASK_RGB:
if (alphaData == null) alphaMode = 0x10000;
apr = 0;
break;
default:
alphaMode = (alphaMode << 16) / 255; // prescale
case ALPHA_CHANNEL_SOURCE:
apr = 0;
break;
}
} else {
alphaMode = 0x10000;
apr = 0;
}
/*** Comprehensive blit (apply transformations) ***/
final int destRedShift = getChannelShift(destRedMask);
final int destRedWidth = getChannelWidth(destRedMask, destRedShift);
final byte[] destReds = ANY_TO_EIGHT[destRedWidth];
final int destRedPreShift = 8 - destRedWidth;
final int destGreenShift = getChannelShift(destGreenMask);
final int destGreenWidth = getChannelWidth(destGreenMask, destGreenShift);
final byte[] destGreens = ANY_TO_EIGHT[destGreenWidth];
final int destGreenPreShift = 8 - destGreenWidth;
final int destBlueShift = getChannelShift(destBlueMask);
final int destBlueWidth = getChannelWidth(destBlueMask, destBlueShift);
final byte[] destBlues = ANY_TO_EIGHT[destBlueWidth];
final int destBluePreShift = 8 - destBlueWidth;
final int destAlphaShift = getChannelShift(destAlphaMask);
final int destAlphaWidth = getChannelWidth(destAlphaMask, destAlphaShift);
final byte[] destAlphas = ANY_TO_EIGHT[destAlphaWidth];
final int destAlphaPreShift = 8 - destAlphaWidth;
int dp = dpr;
int sp = spr;
int ap = apr, alpha = alphaMode;
int r = 0, g = 0, b = 0, a = 0, index = 0;
int rq = 0, gq = 0, bq = 0, aq = 0;
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy,
sp = spr += (sfy >>> 16) * srcStride,
ap = apr += (sfy >>> 16) * alphaStride,
sfy = (sfy & 0xffff) + sfyi,
dp = dpr += dpryi) {
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx,
dp += dprxi,
sfx = (sfx & 0xffff) + sfxi) {
/*** READ NEXT PIXEL ***/
switch (stype) {
case TYPE_INDEX_8:
index = srcData[sp] & 0xff;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_4:
if ((sp & 1) != 0) index = srcData[sp >> 1] & 0x0f;
else index = (srcData[sp >> 1] >>> 4) & 0x0f;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_2:
index = (srcData[sp >> 2] >>> (6 - (sp & 3) * 2)) & 0x03;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_1_MSB:
index = (srcData[sp >> 3] >>> (7 - (sp & 7))) & 0x01;
sp += (sfx >>> 16);
break;
case TYPE_INDEX_1_LSB:
index = (srcData[sp >> 3] >>> (sp & 7)) & 0x01;
sp += (sfx >>> 16);
break;
}
/*** DO SPECIAL PROCESSING IF REQUIRED ***/
r = srcReds[index] & 0xff;
g = srcGreens[index] & 0xff;
b = srcBlues[index] & 0xff;
switch (alphaMode) {
case ALPHA_CHANNEL_SEPARATE:
alpha = ((alphaData[ap] & 0xff) << 16) / 255;
ap += (sfx >> 16);
break;
case ALPHA_MASK_UNPACKED:
alpha = (alphaData[ap] != 0) ? 0x10000 : 0;
ap += (sfx >> 16);
break;
case ALPHA_MASK_PACKED:
alpha = (alphaData[ap >> 3] << ((ap & 7) + 9)) & 0x10000;
ap += (sfx >> 16);
break;
case ALPHA_MASK_INDEX: { // could speed up using binary search if we sorted the indices
int i = 0;
while (i < alphaData.length) {
if (index == (alphaData[i] & 0xff)) break;
}
if (i < alphaData.length) continue;
} break;
case ALPHA_MASK_RGB: {
int i = 0;
while (i < alphaData.length) {
if ((r == (alphaData[i] & 0xff)) &&
(g == (alphaData[i + 1] & 0xff)) &&
(b == (alphaData[i + 2] & 0xff))) break;
i += 3;
}
if (i < alphaData.length) continue;
} break;
}
if (alpha != 0x10000) {
if (alpha == 0x0000) continue;
switch (dtype) {
case TYPE_GENERIC_8: {
final int data = destData[dp] & 0xff;
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_MSB: {
final int data = ((destData[dp] & 0xff) << 8) | (destData[dp + 1] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_LSB: {
final int data = ((destData[dp + 1] & 0xff) << 8) | (destData[dp] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_24: {
final int data = (( ((destData[dp] & 0xff) << 8) |
(destData[dp + 1] & 0xff)) << 8) |
(destData[dp + 2] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_MSB: {
final int data = (( (( ((destData[dp] & 0xff) << 8) |
(destData[dp + 1] & 0xff)) << 8) |
(destData[dp + 2] & 0xff)) << 8) |
(destData[dp + 3] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_LSB: {
final int data = (( (( ((destData[dp + 3] & 0xff) << 8) |
(destData[dp + 2] & 0xff)) << 8) |
(destData[dp + 1] & 0xff)) << 8) |
(destData[dp] & 0xff);
rq = destReds[(data & destRedMask) >>> destRedShift] & 0xff;
gq = destGreens[(data & destGreenMask) >>> destGreenShift] & 0xff;
bq = destBlues[(data & destBlueMask) >>> destBlueShift] & 0xff;
aq = destAlphas[(data & destAlphaMask) >>> destAlphaShift] & 0xff;
} break;
}
// Perform alpha blending
a = aq + ((a - aq) * alpha >> 16);
r = rq + ((r - rq) * alpha >> 16);
g = gq + ((g - gq) * alpha >> 16);
b = bq + ((b - bq) * alpha >> 16);
}
/*** WRITE NEXT PIXEL ***/
final int data =
(r >>> destRedPreShift << destRedShift) |
(g >>> destGreenPreShift << destGreenShift) |
(b >>> destBluePreShift << destBlueShift) |
(a >>> destAlphaPreShift << destAlphaShift);
switch (dtype) {
case TYPE_GENERIC_8: {
destData[dp] = (byte) data;
} break;
case TYPE_GENERIC_16_MSB: {
destData[dp] = (byte) (data >>> 8);
destData[dp + 1] = (byte) (data & 0xff);
} break;
case TYPE_GENERIC_16_LSB: {
destData[dp] = (byte) (data & 0xff);
destData[dp + 1] = (byte) (data >>> 8);
} break;
case TYPE_GENERIC_24: {
destData[dp] = (byte) (data >>> 16);
destData[dp + 1] = (byte) (data >>> 8);
destData[dp + 2] = (byte) (data & 0xff);
} break;
case TYPE_GENERIC_32_MSB: {
destData[dp] = (byte) (data >>> 24);
destData[dp + 1] = (byte) (data >>> 16);
destData[dp + 2] = (byte) (data >>> 8);
destData[dp + 3] = (byte) (data & 0xff);
} break;
case TYPE_GENERIC_32_LSB: {
destData[dp] = (byte) (data & 0xff);
destData[dp + 1] = (byte) (data >>> 8);
destData[dp + 2] = (byte) (data >>> 16);
destData[dp + 3] = (byte) (data >>> 24);
} break;
}
}
}
}
/**
* Blits a direct palette image into an index palette image.
*
* Note: The source and destination masks and palettes must
* always be fully specified.
*
*
* @param op the blitter operation: a combination of BLIT_xxx flags
* (see BLIT_xxx constants)
* @param srcData the source byte array containing image data
* @param srcDepth the source depth: one of 8, 16, 24, 32
* @param srcStride the source number of bytes per line
* @param srcOrder the source byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if srcDepth is not 16 or 32
* @param srcX the top-left x-coord of the source blit region
* @param srcY the top-left y-coord of the source blit region
* @param srcWidth the width of the source blit region
* @param srcHeight the height of the source blit region
* @param srcRedMask the source red channel mask
* @param srcGreenMask the source green channel mask
* @param srcBlueMask the source blue channel mask
* @param alphaMode the alpha blending or mask mode, may be
* an integer 0-255 for global alpha; ignored if BLIT_ALPHA
* not specified in the blitter operations
* (see ALPHA_MODE_xxx constants)
* @param alphaData the alpha blending or mask data, varies depending
* on the value of alphaMode and sometimes ignored
* @param alphaStride the alpha data number of bytes per line
* @param alphaX the top-left x-coord of the alpha blit region
* @param alphaY the top-left y-coord of the alpha blit region
* @param destData the destination byte array containing image data
* @param destDepth the destination depth: one of 1, 2, 4, 8
* @param destStride the destination number of bytes per line
* @param destOrder the destination byte ordering: one of MSB_FIRST or LSB_FIRST;
* ignored if destDepth is not 1
* @param destX the top-left x-coord of the destination blit region
* @param destY the top-left y-coord of the destination blit region
* @param destWidth the width of the destination blit region
* @param destHeight the height of the destination blit region
* @param destReds the destination palette red component intensities
* @param destGreens the destination palette green component intensities
* @param destBlues the destination palette blue component intensities
* @param flipX if true the resulting image is flipped along the vertical axis
* @param flipY if true the resulting image is flipped along the horizontal axis
*/
static void blit(int op,
byte[] srcData, int srcDepth, int srcStride, int srcOrder,
int srcX, int srcY, int srcWidth, int srcHeight,
int srcRedMask, int srcGreenMask, int srcBlueMask,
int alphaMode, byte[] alphaData, int alphaStride, int alphaX, int alphaY,
byte[] destData, int destDepth, int destStride, int destOrder,
int destX, int destY, int destWidth, int destHeight,
byte[] destReds, byte[] destGreens, byte[] destBlues,
boolean flipX, boolean flipY) {
if ((destWidth <= 0) || (destHeight <= 0) || (alphaMode == ALPHA_TRANSPARENT)) return;
// these should be supplied as params later
final int srcAlphaMask = 0;
/*** Prepare scaling data ***/
final int dwm1 = destWidth - 1;
final int sfxi = (dwm1 != 0) ? (int)((((long)srcWidth << 16) - 1) / dwm1) : 0;
final int dhm1 = destHeight - 1;
final int sfyi = (dhm1 != 0) ? (int)((((long)srcHeight << 16) - 1) / dhm1) : 0;
/*** Prepare source-related data ***/
final int sbpp, stype;
switch (srcDepth) {
case 8:
sbpp = 1;
stype = TYPE_GENERIC_8;
break;
case 16:
sbpp = 2;
stype = (srcOrder == MSB_FIRST) ? TYPE_GENERIC_16_MSB : TYPE_GENERIC_16_LSB;
break;
case 24:
sbpp = 3;
stype = TYPE_GENERIC_24;
break;
case 32:
sbpp = 4;
stype = (srcOrder == MSB_FIRST) ? TYPE_GENERIC_32_MSB : TYPE_GENERIC_32_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid source type");
return;
}
int spr = srcY * srcStride + srcX * sbpp;
/*** Prepare destination-related data ***/
final int dtype;
switch (destDepth) {
case 8:
dtype = TYPE_INDEX_8;
break;
case 4:
destStride <<= 1;
dtype = TYPE_INDEX_4;
break;
case 2:
destStride <<= 2;
dtype = TYPE_INDEX_2;
break;
case 1:
destStride <<= 3;
dtype = (destOrder == MSB_FIRST) ? TYPE_INDEX_1_MSB : TYPE_INDEX_1_LSB;
break;
default:
//throw new IllegalArgumentException("Invalid source type");
return;
}
int dpr = ((flipY) ? destY + dhm1 : destY) * destStride + ((flipX) ? destX + dwm1 : destX);
final int dprxi = (flipX) ? -1 : 1;
final int dpryi = (flipY) ? -destStride : destStride;
/*** Prepare special processing data ***/
int apr;
if ((op & BLIT_ALPHA) != 0) {
switch (alphaMode) {
case ALPHA_MASK_UNPACKED:
case ALPHA_CHANNEL_SEPARATE:
if (alphaData == null) alphaMode = 0x10000;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_PACKED:
if (alphaData == null) alphaMode = 0x10000;
alphaStride <<= 3;
apr = alphaY * alphaStride + alphaX;
break;
case ALPHA_MASK_INDEX:
//throw new IllegalArgumentException("Invalid alpha type");
return;
case ALPHA_MASK_RGB:
if (alphaData == null) alphaMode = 0x10000;
apr = 0;
break;
default:
alphaMode = (alphaMode << 16) / 255; // prescale
case ALPHA_CHANNEL_SOURCE:
apr = 0;
break;
}
} else {
alphaMode = 0x10000;
apr = 0;
}
final boolean ditherEnabled = (op & BLIT_DITHER) != 0;
/*** Comprehensive blit (apply transformations) ***/
final int srcRedShift = getChannelShift(srcRedMask);
final byte[] srcReds = ANY_TO_EIGHT[getChannelWidth(srcRedMask, srcRedShift)];
final int srcGreenShift = getChannelShift(srcGreenMask);
final byte[] srcGreens = ANY_TO_EIGHT[getChannelWidth(srcGreenMask, srcGreenShift)];
final int srcBlueShift = getChannelShift(srcBlueMask);
final byte[] srcBlues = ANY_TO_EIGHT[getChannelWidth(srcBlueMask, srcBlueShift)];
final int srcAlphaShift = getChannelShift(srcAlphaMask);
final byte[] srcAlphas = ANY_TO_EIGHT[getChannelWidth(srcAlphaMask, srcAlphaShift)];
int dp = dpr;
int sp = spr;
int ap = apr, alpha = alphaMode;
int r = 0, g = 0, b = 0, a = 0;
int indexq = 0;
int lastindex = 0, lastr = -1, lastg = -1, lastb = -1;
final int[] rerr, gerr, berr;
int destPaletteSize = 1 << destDepth;
if ((destReds != null) && (destReds.length < destPaletteSize)) destPaletteSize = destReds.length;
if (ditherEnabled) {
rerr = new int[destWidth + 2];
gerr = new int[destWidth + 2];
berr = new int[destWidth + 2];
} else {
rerr = null; gerr = null; berr = null;
}
for (int dy = destHeight, sfy = sfyi; dy > 0; --dy,
sp = spr += (sfy >>> 16) * srcStride,
ap = apr += (sfy >>> 16) * alphaStride,
sfy = (sfy & 0xffff) + sfyi,
dp = dpr += dpryi) {
int lrerr = 0, lgerr = 0, lberr = 0;
for (int dx = destWidth, sfx = sfxi; dx > 0; --dx,
dp += dprxi,
sfx = (sfx & 0xffff) + sfxi) {
/*** READ NEXT PIXEL ***/
switch (stype) {
case TYPE_GENERIC_8: {
final int data = srcData[sp] & 0xff;
sp += (sfx >>> 16);
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_MSB: {
final int data = ((srcData[sp] & 0xff) << 8) | (srcData[sp + 1] & 0xff);
sp += (sfx >>> 16) * 2;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_16_LSB: {
final int data = ((srcData[sp + 1] & 0xff) << 8) | (srcData[sp] & 0xff);
sp += (sfx >>> 16) * 2;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_24: {
final int data = (( ((srcData[sp] & 0xff) << 8) |
(srcData[sp + 1] & 0xff)) << 8) |
(srcData[sp + 2] & 0xff);
sp += (sfx >>> 16) * 3;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_MSB: {
final int data = (( (( ((srcData[sp] & 0xff) << 8) |
(srcData[sp + 1] & 0xff)) << 8) |
(srcData[sp + 2] & 0xff)) << 8) |
(srcData[sp + 3] & 0xff);
sp += (sfx >>> 16) * 4;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
case TYPE_GENERIC_32_LSB: {
final int data = (( (( ((srcData[sp + 3] & 0xff) << 8) |
(srcData[sp + 2] & 0xff)) << 8) |
(srcData[sp + 1] & 0xff)) << 8) |
(srcData[sp] & 0xff);
sp += (sfx >>> 16) * 4;
r = srcReds[(data & srcRedMask) >>> srcRedShift] & 0xff;
g = srcGreens[(data & srcGreenMask) >>> srcGreenShift] & 0xff;
b = srcBlues[(data & srcBlueMask) >>> srcBlueShift] & 0xff;
a = srcAlphas[(data & srcAlphaMask) >>> srcAlphaShift] & 0xff;
} break;
}
/*** DO SPECIAL PROCESSING IF REQUIRED ***/
switch (alphaMode) {
case ALPHA_CHANNEL_SEPARATE:
alpha = ((alphaData[ap] & 0xff) << 16) / 255;
ap += (sfx >> 16);
break;
case ALPHA_CHANNEL_SOURCE:
alpha = (a << 16) / 255;
break;
case ALPHA_MASK_UNPACKED:
alpha = (alphaData[ap] != 0) ? 0x10000 : 0;
ap += (sfx >> 16);
break;
case ALPHA_MASK_PACKED:
alpha = (alphaData[ap >> 3] << ((ap & 7) + 9)) & 0x10000;
ap += (sfx >> 16);
break;
case ALPHA_MASK_RGB:
alpha = 0x10000;
for (int i = 0; i < alphaData.length; i += 3) {
if ((r == alphaData[i]) && (g == alphaData[i + 1]) && (b == alphaData[i + 2])) {
alpha = 0x0000;
break;
}
}
break;
}
if (alpha != 0x10000) {
if (alpha == 0x0000) continue;
switch (dtype) {
case TYPE_INDEX_8:
indexq = destData[dp] & 0xff;
break;
case TYPE_INDEX_4:
if ((dp & 1) != 0) indexq = destData[dp >> 1] & 0x0f;
else indexq = (destData[dp >> 1] >>> 4) & 0x0f;
break;
case TYPE_INDEX_2:
indexq = (destData[dp >> 2] >>> (6 - (dp & 3) * 2)) & 0x03;
break;
case TYPE_INDEX_1_MSB:
indexq = (destData[dp >> 3] >>> (7 - (dp & 7))) & 0x01;
break;
case TYPE_INDEX_1_LSB:
indexq = (destData[dp >> 3] >>> (dp & 7)) & 0x01;
break;
}
// Perform alpha blending
final int rq = destReds[indexq] & 0xff;
final int gq = destGreens[indexq] & 0xff;
final int bq = destBlues[indexq] & 0xff;
r = rq + ((r - rq) * alpha >> 16);
g = gq + ((g - gq) * alpha >> 16);
b = bq + ((b - bq) * alpha >> 16);
}
/*** MAP COLOR TO THE PALETTE ***/
if (ditherEnabled) {
// Floyd-Steinberg error diffusion
r += rerr[dx] >> 4;
if (r < 0) r = 0; else if (r > 255) r = 255;
g += gerr[dx] >> 4;
if (g < 0) g = 0; else if (g > 255) g = 255;
b += berr[dx] >> 4;
if (b < 0) b = 0; else if (b > 255) b = 255;
rerr[dx] = lrerr;
gerr[dx] = lgerr;
berr[dx] = lberr;
}
if (r != lastr || g != lastg || b != lastb) {
// moving the variable declarations out seems to make the JDK JIT happier...
for (int j = 0, dr, dg, db, distance, minDistance = 0x7fffffff; j < destPaletteSize; ++j) {
dr = (destReds[j] & 0xff) - r;
dg = (destGreens[j] & 0xff) - g;
db = (destBlues[j] & 0xff) - b;
distance = dr * dr + dg * dg + db * db;
if (distance < minDistance) {
lastindex = j;
if (distance == 0) break;
minDistance = distance;
}
}
lastr = r; lastg = g; lastb = b;
}
if (ditherEnabled) {
// Floyd-Steinberg error diffusion, cont'd...
final int dxm1 = dx - 1, dxp1 = dx + 1;
int acc;
rerr[dxp1] += acc = (lrerr = r - (destReds[lastindex] & 0xff)) + lrerr + lrerr;
rerr[dx] += acc += lrerr + lrerr;
rerr[dxm1] += acc + lrerr + lrerr;
gerr[dxp1] += acc = (lgerr = g - (destGreens[lastindex] & 0xff)) + lgerr + lgerr;
gerr[dx] += acc += lgerr + lgerr;
gerr[dxm1] += acc + lgerr + lgerr;
berr[dxp1] += acc = (lberr = b - (destBlues[lastindex] & 0xff)) + lberr + lberr;
berr[dx] += acc += lberr + lberr;
berr[dxm1] += acc + lberr + lberr;
}
/*** WRITE NEXT PIXEL ***/
switch (dtype) {
case TYPE_INDEX_8:
destData[dp] = (byte) lastindex;
break;
case TYPE_INDEX_4:
if ((dp & 1) != 0) destData[dp >> 1] = (byte)((destData[dp >> 1] & 0xf0) | lastindex);
else destData[dp >> 1] = (byte)((destData[dp >> 1] & 0x0f) | (lastindex << 4));
break;
case TYPE_INDEX_2: {
final int shift = 6 - (dp & 3) * 2;
destData[dp >> 2] = (byte)(destData[dp >> 2] & ~(0x03 << shift) | (lastindex << shift));
} break;
case TYPE_INDEX_1_MSB: {
final int shift = 7 - (dp & 7);
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (lastindex << shift));
} break;
case TYPE_INDEX_1_LSB: {
final int shift = dp & 7;
destData[dp >> 3] = (byte)(destData[dp >> 3] & ~(0x01 << shift) | (lastindex << shift));
} break;
}
}
}
}
/**
* Computes the required channel shift from a mask.
*/
static int getChannelShift(int mask) {
if (mask == 0) return 0;
int i;
for (i = 0; ((mask & 1) == 0) && (i < 32); ++i) {
mask >>>= 1;
}
return i;
}
/**
* Computes the required channel width (depth) from a mask.
*/
static int getChannelWidth(int mask, int shift) {
if (mask == 0) return 0;
int i;
mask >>>= shift;
for (i = shift; ((mask & 1) != 0) && (i < 32); ++i) {
mask >>>= 1;
}
return i - shift;
}
/**
* Extracts a field from packed RGB data given a mask for that field.
*/
static byte getChannelField(int data, int mask) {
final int shift = getChannelShift(mask);
return ANY_TO_EIGHT[getChannelWidth(mask, shift)][(data & mask) >>> shift];
}
/**
* Creates an ImageData containing one band's worth of a gradient filled
* block. If vertical
is true, the band must be tiled
* horizontally to fill a region, otherwise it must be tiled vertically.
*
* @param width the width of the region to be filled
* @param height the height of the region to be filled
* @param vertical if true sweeps from top to bottom, else
* sweeps from left to right
* @param fromRGB the color to start with
* @param toRGB the color to end with
* @param redBits the number of significant red bits, 0 for palette modes
* @param greenBits the number of significant green bits, 0 for palette modes
* @param blueBits the number of significant blue bits, 0 for palette modes
* @return the new ImageData
*/
static ImageData createGradientBand(
int width, int height, boolean vertical,
RGB fromRGB, RGB toRGB,
int redBits, int greenBits, int blueBits) {
/* Gradients are drawn as tiled bands */
final int bandWidth, bandHeight, bitmapDepth;
final byte[] bitmapData;
final PaletteData paletteData;
/* Select an algorithm depending on the depth of the screen */
if (redBits != 0 && greenBits != 0 && blueBits != 0) {
paletteData = new PaletteData(0x0000ff00, 0x00ff0000, 0xff000000);
bitmapDepth = 32;
if (redBits >= 8 && greenBits >= 8 && blueBits >= 8) {
/* Precise color */
final int steps;
if (vertical) {
bandWidth = 1;
bandHeight = height;
steps = bandHeight > 1 ? bandHeight - 1 : 1;
} else {
bandWidth = width;
bandHeight = 1;
steps = bandWidth > 1 ? bandWidth - 1 : 1;
}
final int bytesPerLine = bandWidth * 4;
bitmapData = new byte[bandHeight * bytesPerLine];
buildPreciseGradientChannel(fromRGB.blue, toRGB.blue, steps, bandWidth, bandHeight, vertical, bitmapData, 0, bytesPerLine);
buildPreciseGradientChannel(fromRGB.green, toRGB.green, steps, bandWidth, bandHeight, vertical, bitmapData, 1, bytesPerLine);
buildPreciseGradientChannel(fromRGB.red, toRGB.red, steps, bandWidth, bandHeight, vertical, bitmapData, 2, bytesPerLine);
} else {
/* Dithered color */
final int steps;
if (vertical) {
bandWidth = (width < 8) ? width : 8;
bandHeight = height;
steps = bandHeight > 1 ? bandHeight - 1 : 1;
} else {
bandWidth = width;
bandHeight = (height < 8) ? height : 8;
steps = bandWidth > 1 ? bandWidth - 1 : 1;
}
final int bytesPerLine = bandWidth * 4;
bitmapData = new byte[bandHeight * bytesPerLine];
buildDitheredGradientChannel(fromRGB.blue, toRGB.blue, steps, bandWidth, bandHeight, vertical, bitmapData, 0, bytesPerLine, blueBits);
buildDitheredGradientChannel(fromRGB.green, toRGB.green, steps, bandWidth, bandHeight, vertical, bitmapData, 1, bytesPerLine, greenBits);
buildDitheredGradientChannel(fromRGB.red, toRGB.red, steps, bandWidth, bandHeight, vertical, bitmapData, 2, bytesPerLine, redBits);
}
} else {
/* Dithered two tone */
paletteData = new PaletteData(fromRGB, toRGB);
bitmapDepth = 8;
final int blendi;
if (vertical) {
bandWidth = (width < 8) ? width : 8;
bandHeight = height;
blendi = (bandHeight > 1) ? 0x1040000 / (bandHeight - 1) + 1 : 1;
} else {
bandWidth = width;
bandHeight = (height < 8) ? height : 8;
blendi = (bandWidth > 1) ? 0x1040000 / (bandWidth - 1) + 1 : 1;
}
final int bytesPerLine = (bandWidth + 3) & -4;
bitmapData = new byte[bandHeight * bytesPerLine];
if (vertical) {
for (int dy = 0, blend = 0, dp = 0; dy < bandHeight;
++dy, blend += blendi, dp += bytesPerLine) {
for (int dx = 0; dx < bandWidth; ++dx) {
bitmapData[dp + dx] = (blend + DITHER_MATRIX[dy & 7][dx]) <
0x1000000 ? (byte)0 : (byte)1;
}
}
} else {
for (int dx = 0, blend = 0; dx < bandWidth; ++dx, blend += blendi) {
for (int dy = 0, dptr = dx; dy < bandHeight; ++dy, dptr += bytesPerLine) {
bitmapData[dptr] = (blend + DITHER_MATRIX[dy][dx & 7]) <
0x1000000 ? (byte)0 : (byte)1;
}
}
}
}
return new ImageData(bandWidth, bandHeight, bitmapDepth, paletteData, 4, bitmapData);
}
/*
* Fill in gradated values for a color channel
*/
static void buildPreciseGradientChannel(int from, int to, int steps,
int bandWidth, int bandHeight, boolean vertical,
byte[] bitmapData, int dp, int bytesPerLine) {
int val = from << 16;
final int inc = ((to << 16) - val) / steps + 1;
if (vertical) {
for (int dy = 0; dy < bandHeight; ++dy, dp += bytesPerLine) {
bitmapData[dp] = (byte)(val >>> 16);
val += inc;
}
} else {
for (int dx = 0; dx < bandWidth; ++dx, dp += 4) {
bitmapData[dp] = (byte)(val >>> 16);
val += inc;
}
}
}
/*
* Fill in dithered gradated values for a color channel
*/
static void buildDitheredGradientChannel(int from, int to, int steps,
int bandWidth, int bandHeight, boolean vertical,
byte[] bitmapData, int dp, int bytesPerLine, int bits) {
final int mask = 0xff00 >>> bits;
int val = from << 16;
final int inc = ((to << 16) - val) / steps + 1;
if (vertical) {
for (int dy = 0; dy < bandHeight; ++dy, dp += bytesPerLine) {
for (int dx = 0, dptr = dp; dx < bandWidth; ++dx, dptr += 4) {
final int thresh = DITHER_MATRIX[dy & 7][dx] >>> bits;
int temp = val + thresh;
if (temp > 0xffffff) bitmapData[dptr] = -1;
else bitmapData[dptr] = (byte)((temp >>> 16) & mask);
}
val += inc;
}
} else {
for (int dx = 0; dx < bandWidth; ++dx, dp += 4) {
for (int dy = 0, dptr = dp; dy < bandHeight; ++dy, dptr += bytesPerLine) {
final int thresh = DITHER_MATRIX[dy][dx & 7] >>> bits;
int temp = val + thresh;
if (temp > 0xffffff) bitmapData[dptr] = -1;
else bitmapData[dptr] = (byte)((temp >>> 16) & mask);
}
val += inc;
}
}
}
/**
* Renders a gradient onto a GC.
*
* This is a GC helper.
*
*
* @param gc the GC to render the gradient onto
* @param device the device the GC belongs to
* @param x the top-left x coordinate of the region to be filled
* @param y the top-left y coordinate of the region to be filled
* @param width the width of the region to be filled
* @param height the height of the region to be filled
* @param vertical if true sweeps from top to bottom, else
* sweeps from left to right
* @param fromRGB the color to start with
* @param toRGB the color to end with
* @param redBits the number of significant red bits, 0 for palette modes
* @param greenBits the number of significant green bits, 0 for palette modes
* @param blueBits the number of significant blue bits, 0 for palette modes
*/
static void fillGradientRectangle(GC gc, Device device,
int x, int y, int width, int height, boolean vertical,
RGB fromRGB, RGB toRGB,
int redBits, int greenBits, int blueBits) {
/* Create the bitmap and tile it */
ImageData band = createGradientBand(width, height, vertical,
fromRGB, toRGB, redBits, greenBits, blueBits);
Image image = new Image(device, band);
if ((band.width == 1) || (band.height == 1)) {
gc.drawImage(image, 0, 0, DPIUtil.autoScaleDown(band.width), DPIUtil.autoScaleDown(band.height),
DPIUtil.autoScaleDown(x), DPIUtil.autoScaleDown(y), DPIUtil.autoScaleDown(width),
DPIUtil.autoScaleDown(height));
} else {
if (vertical) {
for (int dx = 0; dx < width; dx += band.width) {
int blitWidth = width - dx;
if (blitWidth > band.width) blitWidth = band.width;
gc.drawImage(image, 0, 0, DPIUtil.autoScaleDown(blitWidth), DPIUtil.autoScaleDown(band.height),
DPIUtil.autoScaleDown(dx + x), DPIUtil.autoScaleDown(y), DPIUtil.autoScaleDown(blitWidth),
DPIUtil.autoScaleDown(band.height));
}
} else {
for (int dy = 0; dy < height; dy += band.height) {
int blitHeight = height - dy;
if (blitHeight > band.height) blitHeight = band.height;
gc.drawImage(image, 0, 0, DPIUtil.autoScaleDown(band.width), DPIUtil.autoScaleDown(blitHeight),
DPIUtil.autoScaleDown(x), DPIUtil.autoScaleDown(dy + y), DPIUtil.autoScaleDown(band.width),
DPIUtil.autoScaleDown(blitHeight));
}
}
}
image.dispose();
}
}