org.apache.felix.resolver.Candidates Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of org.eclipse.osgi Show documentation
Show all versions of org.eclipse.osgi Show documentation
This is org.eclipse.osgi jar used by Scout SDK
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.apache.felix.resolver;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import java.util.TreeMap;
import org.apache.felix.resolver.util.CopyOnWriteSet;
import org.apache.felix.resolver.util.CopyOnWriteList;
import org.apache.felix.resolver.util.OpenHashMap;
import org.apache.felix.resolver.util.OpenHashMapList;
import org.apache.felix.resolver.util.OpenHashMapSet;
import org.apache.felix.resolver.util.ShadowList;
import org.osgi.framework.Version;
import org.osgi.framework.namespace.HostNamespace;
import org.osgi.framework.namespace.IdentityNamespace;
import org.osgi.framework.namespace.PackageNamespace;
import org.osgi.resource.Capability;
import org.osgi.resource.Requirement;
import org.osgi.resource.Resource;
import org.osgi.resource.Wire;
import org.osgi.resource.Wiring;
import org.osgi.service.resolver.HostedCapability;
import org.osgi.service.resolver.ResolutionException;
import org.osgi.service.resolver.ResolveContext;
class Candidates
{
public static final int MANDATORY = 0;
public static final int OPTIONAL = 1;
private final Set m_mandatoryResources;
// Maps a capability to requirements that match it.
private final OpenHashMapSet m_dependentMap;
// Maps a requirement to the capability it matches.
private final OpenHashMapList m_candidateMap;
// Maps a bundle revision to its associated wrapped revision; this only happens
// when a revision being resolved has fragments to attach to it.
private final Map m_allWrappedHosts;
// Map used when populating candidates to hold intermediate and final results.
private final Map m_populateResultCache;
// Flag to signal if fragments are present in the candidate map.
private boolean m_fragmentsPresent = false;
private final Map m_validOnDemandResources;
private final Map m_subtitutableMap;
private final OpenHashMapSet m_delta;
/**
* Private copy constructor used by the copy() method.
*/
private Candidates(
Set mandatoryResources,
OpenHashMapSet dependentMap,
OpenHashMapList candidateMap,
Map wrappedHosts, Map populateResultCache,
boolean fragmentsPresent,
Map onDemandResources,
Map substitutableMap,
OpenHashMapSet delta)
{
m_mandatoryResources = mandatoryResources;
m_dependentMap = dependentMap;
m_candidateMap = candidateMap;
m_allWrappedHosts = wrappedHosts;
m_populateResultCache = populateResultCache;
m_fragmentsPresent = fragmentsPresent;
m_validOnDemandResources = onDemandResources;
m_subtitutableMap = substitutableMap;
m_delta = delta;
}
/**
* Constructs an empty Candidates object.
*/
public Candidates(Map validOnDemandResources)
{
m_mandatoryResources = new HashSet();
m_dependentMap = new OpenHashMapSet();
m_candidateMap = new OpenHashMapList();
m_allWrappedHosts = new HashMap();
m_populateResultCache = new LinkedHashMap();
m_validOnDemandResources = validOnDemandResources;
m_subtitutableMap = new LinkedHashMap();
m_delta = new OpenHashMapSet(3);
}
/**
* Returns the delta which is the differences in the candidates from the
* original Candidates permutation.
* @return the delta
*/
public Object getDelta() {
return m_delta;
}
/**
* Populates candidates for the specified revision. How a revision is
* resolved depends on its resolution type as follows:
*
* - MANDATORY - must resolve and failure to do so throws an
* exception.
* - OPTIONAL - attempt to resolve, but no exception is thrown if
* the resolve fails.
* - ON_DEMAND - only resolve on demand; this only applies to
* fragments and will only resolve a fragment if its host is already
* selected as a candidate.
*
*
* @param rc the resolve context used for populating the candidates.
* @param resource the resource whose candidates should be populated.
* @param resolution indicates the resolution type.
*/
public final void populate(
ResolveContext rc, Resource resource, int resolution) throws ResolutionException
{
// Get the current result cache value, to make sure the revision
// hasn't already been populated.
Object cacheValue = m_populateResultCache.get(resource);
// Has been unsuccessfully populated.
if (cacheValue instanceof ResolutionException)
{
return;
}
// Has been successfully populated.
else if (cacheValue instanceof Boolean)
{
return;
}
// We will always attempt to populate fragments, since this is necessary
// for ondemand attaching of fragment. However, we'll only attempt to
// populate optional non-fragment revisions if they aren't already
// resolved.
boolean isFragment = Util.isFragment(resource);
if (!isFragment && rc.getWirings().containsKey(resource))
{
return;
}
if (resolution == MANDATORY)
{
m_mandatoryResources.add(resource);
}
try
{
// Try to populate candidates for the optional revision.
populateResource(rc, resource);
}
catch (ResolutionException ex)
{
// Only throw an exception if resolution is mandatory.
if (resolution == MANDATORY)
{
throw ex;
}
}
}
/**
* Populates candidates for the specified revision.
*
* @param rc the resolver state used for populating the candidates.
* @param resource the revision whose candidates should be populated.
*/
// TODO: FELIX3 - Modify to not be recursive.
@SuppressWarnings("unchecked")
private void populateResource(ResolveContext rc, Resource resource) throws ResolutionException
{
// Determine if we've already calculated this revision's candidates.
// The result cache will have one of three values:
// 1. A resolve exception if we've already attempted to populate the
// revision's candidates but were unsuccessful.
// 2. Boolean.TRUE indicating we've already attempted to populate the
// revision's candidates and were successful.
// 3. An array containing the cycle count, current map of candidates
// for already processed requirements, and a list of remaining
// requirements whose candidates still need to be calculated.
// For case 1, rethrow the exception. For case 2, simply return immediately.
// For case 3, this means we have a cycle so we should continue to populate
// the candidates where we left off and not record any results globally
// until we've popped completely out of the cycle.
// Keeps track of the number of times we've reentered this method
// for the current revision.
Integer cycleCount = null;
// Keeps track of the candidates we've already calculated for the
// current revision's requirements.
Map> localCandidateMap = null;
// Keeps track of the current revision's requirements for which we
// haven't yet found candidates.
List remainingReqs = null;
// Get the cache value for the current revision.
Object cacheValue = m_populateResultCache.get(resource);
// This is case 1.
if (cacheValue instanceof ResolutionException)
{
throw (ResolutionException) cacheValue;
}
// This is case 2.
else if (cacheValue instanceof Boolean)
{
return;
}
// This is case 3.
else if (cacheValue != null)
{
// Increment and get the cycle count.
cycleCount = (Integer) (((Object[]) cacheValue)[0] = (Integer) ((Object[]) cacheValue)[0] + 1);
// Get the already populated candidates.
localCandidateMap = (Map) ((Object[]) cacheValue)[1];
// Get the remaining requirements.
remainingReqs = (List) ((Object[]) cacheValue)[2];
}
// If there is no cache value for the current revision, then this is
// the first time we are attempting to populate its candidates, so
// do some one-time checks and initialization.
if ((remainingReqs == null) && (localCandidateMap == null))
{
// Record cycle count.
cycleCount = 0;
// Create a local map for populating candidates first, just in case
// the revision is not resolvable.
localCandidateMap = new HashMap>();
// Create a modifiable list of the revision's requirements.
remainingReqs = new ArrayList(resource.getRequirements(null));
// Add these value to the result cache so we know we are
// in the middle of populating candidates for the current
// revision.
m_populateResultCache.put(resource,
cacheValue = new Object[] { cycleCount, localCandidateMap, remainingReqs });
}
// If we have requirements remaining, then find candidates for them.
while (!remainingReqs.isEmpty())
{
Requirement req = remainingReqs.remove(0);
// Ignore non-effective and dynamic requirements.
String resolution = req.getDirectives()
.get(PackageNamespace.REQUIREMENT_RESOLUTION_DIRECTIVE);
if (!rc.isEffective(req)
|| ((resolution != null)
&& resolution.equals(PackageNamespace.RESOLUTION_DYNAMIC)))
{
continue;
}
// Process the candidates, removing any candidates that
// cannot resolve.
List candidates = rc.findProviders(req);
ResolutionException rethrow = processCandidates(rc, resource, candidates);
// First, due to cycles, makes sure we haven't already failed in
// a deeper recursion.
Object result = m_populateResultCache.get(resource);
if (result instanceof ResolutionException)
{
throw (ResolutionException) result;
}
// Next, if are no candidates remaining and the requirement is not
// not optional, then record and throw a resolve exception.
else if (candidates.isEmpty() && !Util.isOptional(req))
{
if (Util.isFragment(resource) && rc.getWirings().containsKey(resource))
{
// This is a fragment that is already resolved and there is no unresolved hosts to attach it to.
m_populateResultCache.put(resource, Boolean.TRUE);
return;
}
String msg = "Unable to resolve " + resource
+ ": missing requirement " + req;
if (rethrow != null)
{
msg = msg + " [caused by: " + rethrow.getMessage() + "]";
}
rethrow = new ResolutionException(msg, null, Collections.singleton(req));
m_populateResultCache.put(resource, rethrow);
throw rethrow;
}
// Otherwise, if we actually have candidates for the requirement, then
// add them to the local candidate map.
else if (candidates.size() > 0)
{
localCandidateMap.put(req, candidates);
}
}
// If we are exiting from a cycle then decrement
// cycle counter, otherwise record the result.
if (cycleCount > 0)
{
((Object[]) cacheValue)[0] = cycleCount - 1;
}
else if (cycleCount == 0)
{
// Record that the revision was successfully populated.
m_populateResultCache.put(resource, Boolean.TRUE);
// FELIX-4825: Verify candidate map in case of cycles and optional requirements
for (Iterator>> it = localCandidateMap.entrySet().iterator(); it.hasNext();)
{
Map.Entry> entry = it.next();
for (Iterator it2 = entry.getValue().iterator(); it2.hasNext();)
{
if (m_populateResultCache.get(it2.next().getResource()) instanceof ResolutionException)
{
it2.remove();
}
}
if (entry.getValue().isEmpty())
{
it.remove();
}
}
// Merge local candidate map into global candidate map.
if (localCandidateMap.size() > 0)
{
add(localCandidateMap);
}
if ((rc instanceof FelixResolveContext) && !Util.isFragment(resource))
{
Collection ondemandFragments = ((FelixResolveContext) rc).getOndemandResources(resource);
for (Resource fragment : ondemandFragments)
{
Boolean valid = m_validOnDemandResources.get(fragment);
if (valid == null)
{
// Mark this resource as a valid on demand resource
m_validOnDemandResources.put(fragment, Boolean.TRUE);
valid = Boolean.TRUE;
}
if (valid)
{
// This resource is a valid on demand resource;
// populate it now, consider it optional
populate(rc, fragment, OPTIONAL);
}
}
}
}
}
private void populateSubstitutables()
{
for (Map.Entry populated : m_populateResultCache.entrySet())
{
if (populated.getValue() instanceof Boolean)
{
populateSubstitutables(populated.getKey());
}
}
}
private void populateSubstitutables(Resource resource)
{
// Collect the package names exported
List packageExports = resource.getCapabilities(PackageNamespace.PACKAGE_NAMESPACE);
if (packageExports.isEmpty())
{
return;
}
List packageImports = resource.getRequirements(PackageNamespace.PACKAGE_NAMESPACE);
if (packageImports.isEmpty())
{
return;
}
Map> exportNames = new LinkedHashMap>();
for (Capability packageExport : packageExports)
{
String packageName = (String) packageExport.getAttributes().get(PackageNamespace.PACKAGE_NAMESPACE);
List caps = exportNames.get(packageName);
if (caps == null)
{
caps = new ArrayList(1);
exportNames.put(packageName, caps);
}
caps.add(packageExport);
}
// Check if any requirements substitute one of the exported packages
for (Requirement req : packageImports)
{
List substitutes = m_candidateMap.get(req);
if (substitutes != null && !substitutes.isEmpty())
{
String packageName = (String) substitutes.iterator().next().getAttributes().get(PackageNamespace.PACKAGE_NAMESPACE);
List exportedPackages = exportNames.get(packageName);
if (exportedPackages != null)
{
// The package is exported;
// Check if the requirement only has the bundle's own export as candidates
substitutes = new ArrayList(substitutes);
for (Capability exportedPackage : exportedPackages)
{
substitutes.remove(exportedPackage);
}
if (!substitutes.isEmpty())
{
for (Capability exportedPackage : exportedPackages)
{
m_subtitutableMap.put(exportedPackage, req);
}
}
}
}
}
}
private static final int UNPROCESSED = 0;
private static final int PROCESSING = 1;
private static final int SUBSTITUTED = 2;
private static final int EXPORTED = 3;
void checkSubstitutes(List importPermutations) throws ResolutionException
{
Map substituteStatuses = new LinkedHashMap(m_subtitutableMap.size());
for (Capability substitutable : m_subtitutableMap.keySet())
{
// initialize with unprocessed
substituteStatuses.put(substitutable, UNPROCESSED);
}
// note we are iterating over the original unmodified map by design
for (Capability substitutable : m_subtitutableMap.keySet())
{
isSubstituted(substitutable, substituteStatuses);
}
// Remove any substituted exports from candidates
for (Map.Entry substituteStatus : substituteStatuses.entrySet())
{
if (substituteStatus.getValue() == SUBSTITUTED)
{
if (m_dependentMap.isEmpty())
{
// make sure the dependents are populated
populateDependents();
}
}
// add a permutation that imports a different candidate for the substituted if possible
Requirement substitutedReq = m_subtitutableMap.get(substituteStatus.getKey());
if (substitutedReq != null)
{
permutateIfNeeded(substitutedReq, importPermutations);
}
Set dependents = m_dependentMap.get(substituteStatus.getKey());
if (dependents != null)
{
for (Requirement dependent : dependents)
{
List candidates = m_candidateMap.get(dependent);
if (candidates != null)
{
candidates:
for (Iterator iCandidates = candidates.iterator(); iCandidates.hasNext();)
{
Capability candidate = iCandidates.next();
Integer candidateStatus = substituteStatuses.get(candidate);
if (candidateStatus == null)
{
candidateStatus = EXPORTED;
}
switch (candidateStatus)
{
case EXPORTED:
// non-substituted candidate hit before the substituted one; do not continue
break candidates;
case SUBSTITUTED:
default:
// Need to remove any substituted that comes before an exported candidate
iCandidates.remove();
// continue to next candidate
break;
}
}
if (candidates.isEmpty())
{
if (Util.isOptional(dependent))
{
m_candidateMap.remove(dependent);
}
else
{
String msg = "Unable to resolve " + dependent.getResource()
+ ": missing requirement " + dependent;
throw new ResolutionException(msg, null, Collections.singleton(dependent));
}
}
}
}
}
}
}
private boolean isSubstituted(Capability substitutableCap, Map substituteStatuses)
{
Integer substituteState = substituteStatuses.get(substitutableCap);
if (substituteState == null)
{
return false;
}
switch (substituteState)
{
case PROCESSING:
// found a cycle mark the initiator as not substituted
substituteStatuses.put(substitutableCap, EXPORTED);
return false;
case SUBSTITUTED:
return true;
case EXPORTED:
return false;
default:
break;
}
Requirement substitutableReq = m_subtitutableMap.get(substitutableCap);
if (substitutableReq == null)
{
// this should never happen.
return false;
}
// mark as processing to detect cycles
substituteStatuses.put(substitutableCap, PROCESSING);
// discover possible substitutes
List substitutes = m_candidateMap.get(substitutableReq);
if (substitutes != null)
{
for (Capability substituteCandidate : substitutes)
{
if (substituteCandidate.getResource().equals(substitutableCap.getResource()))
{
substituteStatuses.put(substitutableCap, EXPORTED);
return false;
}
if (!isSubstituted(substituteCandidate, substituteStatuses))
{
// The resource's exported package is substituted for this permutation.
substituteStatuses.put(substitutableCap, SUBSTITUTED);
return true;
}
}
}
// if we get here then the export is not substituted
substituteStatuses.put(substitutableCap, EXPORTED);
return false;
}
public void populateDynamic(
ResolveContext rc, Resource resource,
Requirement req, List candidates) throws ResolutionException
{
// Record the revision associated with the dynamic require
// as a mandatory revision.
m_mandatoryResources.add(resource);
// Process the candidates, removing any candidates that
// cannot resolve.
ResolutionException rethrow = processCandidates(rc, resource, candidates);
// Add the dynamic imports candidates.
// Make sure this is done after the call to processCandidates since we want to ensure
// fragment candidates are properly hosted before adding the candidates list which makes a copy
add(req, candidates);
if (candidates.isEmpty())
{
if (rethrow == null)
{
rethrow = new ResolutionException(
"Dynamic import failed.", null, Collections.singleton(req));
}
throw rethrow;
}
m_populateResultCache.put(resource, Boolean.TRUE);
}
/**
* This method performs common processing on the given set of candidates.
* Specifically, it removes any candidates which cannot resolve and it
* synthesizes candidates for any candidates coming from any attached
* fragments, since fragment capabilities only appear once, but technically
* each host represents a unique capability.
*
* @param rc the resolver state.
* @param resource the revision being resolved.
* @param candidates the candidates to process.
* @return a resolve exception to be re-thrown, if any, or null.
*/
private ResolutionException processCandidates(
ResolveContext rc,
Resource resource,
List candidates)
{
// Get satisfying candidates and populate their candidates if necessary.
ResolutionException rethrow = null;
Set fragmentCands = null;
for (Iterator itCandCap = candidates.iterator();
itCandCap.hasNext();)
{
Capability candCap = itCandCap.next();
boolean isFragment = Util.isFragment(candCap.getResource());
// If the capability is from a fragment, then record it
// because we have to insert associated host capabilities
// if the fragment is already attached to any hosts.
if (isFragment)
{
if (fragmentCands == null)
{
fragmentCands = new HashSet();
}
fragmentCands.add(candCap);
}
// If the candidate revision is a fragment, then always attempt
// to populate candidates for its dependency, since it must be
// attached to a host to be used. Otherwise, if the candidate
// revision is not already resolved and is not the current version
// we are trying to populate, then populate the candidates for
// its dependencies as well.
// NOTE: Technically, we don't have to check to see if the
// candidate revision is equal to the current revision, but this
// saves us from recursing and also simplifies exceptions messages
// since we effectively chain exception messages for each level
// of recursion; thus, any avoided recursion results in fewer
// exceptions to chain when an error does occur.
if ((isFragment || !rc.getWirings().containsKey(candCap.getResource()))
&& !candCap.getResource().equals(resource))
{
try
{
populateResource(rc, candCap.getResource());
}
catch (ResolutionException ex)
{
if (rethrow == null)
{
rethrow = ex;
}
// Remove the candidate since we weren't able to
// populate its candidates.
itCandCap.remove();
}
}
}
// If any of the candidates for the requirement were from a fragment,
// then also insert synthesized hosted capabilities for any other host
// to which the fragment is attached since they are all effectively
// unique capabilities.
if (fragmentCands != null)
{
for (Capability fragCand : fragmentCands)
{
String fragCandName = fragCand.getNamespace();
if (IdentityNamespace.IDENTITY_NAMESPACE.equals(fragCandName))
{
// no need to wrap identity namespace ever
continue;
}
// Only necessary for resolved fragments.
Wiring wiring = rc.getWirings().get(fragCand.getResource());
if (wiring != null)
{
// Fragments only have host wire, so each wire represents
// an attached host.
for (Wire wire : wiring.getRequiredResourceWires(HostNamespace.HOST_NAMESPACE))
{
// If the capability is a package, then make sure the
// host actually provides it in its resolved capabilities,
// since it may be a substitutable export.
if (!fragCandName.equals(PackageNamespace.PACKAGE_NAMESPACE)
|| rc.getWirings().get(wire.getProvider())
.getResourceCapabilities(null).contains(fragCand))
{
// Note that we can just add this as a candidate
// directly, since we know it is already resolved.
// NOTE: We are synthesizing a hosted capability here,
// but we are not using a ShadowList like we do when
// we synthesizing capabilities for unresolved hosts.
// It is not necessary to use the ShadowList here since
// the host is resolved, because in that case we can
// calculate the proper package space by traversing
// the wiring. In the unresolved case, this isn't possible
// so we need to use the ShadowList so we can keep
// a reference to a synthesized resource with attached
// fragments so we can correctly calculate its package
// space.
// Must remove the fragment candidate because we must
// only use hosted capabilities for package namespace
candidates.remove(fragCand);
rc.insertHostedCapability(
candidates,
new WrappedCapability(
wire.getCapability().getResource(),
fragCand));
}
}
}
}
}
return rethrow;
}
public boolean isPopulated(Resource resource)
{
Object value = m_populateResultCache.get(resource);
return ((value != null) && (value instanceof Boolean));
}
public ResolutionException getResolveException(Resource resource)
{
Object value = m_populateResultCache.get(resource);
return ((value != null) && (value instanceof ResolutionException))
? (ResolutionException) value : null;
}
/**
* Adds a requirement and its matching candidates to the internal data
* structure. This method assumes it owns the data being passed in and does
* not make a copy. It takes the data and processes, such as calculating
* which requirements depend on which capabilities and recording any
* fragments it finds for future merging.
*
* @param req the requirement to add.
* @param candidates the candidates matching the requirement.
*/
private void add(Requirement req, List candidates)
{
if (req.getNamespace().equals(HostNamespace.HOST_NAMESPACE))
{
m_fragmentsPresent = true;
}
// Record the candidates.
m_candidateMap.put(req, new CopyOnWriteList(candidates));
}
/**
* Adds requirements and candidates in bulk. The outer map is not retained
* by this method, but the inner data structures are, so they should not be
* further modified by the caller.
*
* @param candidates the bulk requirements and candidates to add.
*/
private void add(Map> candidates)
{
for (Entry> entry : candidates.entrySet())
{
add(entry.getKey(), entry.getValue());
}
}
/**
* Returns the wrapped resource associated with the given resource. If the
* resource was not wrapped, then the resource itself is returned. This is
* really only needed to determine if the root resources of the resolve have
* been wrapped.
*
* @param r the resource whose wrapper is desired.
* @return the wrapper resource or the resource itself if it was not
* wrapped.
*/
public Resource getWrappedHost(Resource r)
{
Resource wrapped = m_allWrappedHosts.get(r);
return (wrapped == null) ? r : wrapped;
}
/**
* Gets the candidates associated with a given requirement.
*
* @param req the requirement whose candidates are desired.
* @return the matching candidates or null.
*/
public List getCandidates(Requirement req)
{
List candidates = m_candidateMap.get(req);
if (candidates != null)
{
return Collections.unmodifiableList(candidates);
}
return null;
}
public Capability getFirstCandidate(Requirement req)
{
List candidates = m_candidateMap.get(req);
if (candidates != null && !candidates.isEmpty())
{
return m_candidateMap.get(req).get(0);
}
return null;
}
public void removeFirstCandidate(Requirement req)
{
List candidates = m_candidateMap.get(req);
// Remove the conflicting candidate.
Capability cap = candidates.remove(0);
if (candidates.isEmpty())
{
m_candidateMap.remove(req);
}
// Update the delta with the removed capability
CopyOnWriteSet capPath = m_delta.get(req);
if (capPath == null) {
capPath = new CopyOnWriteSet();
m_delta.put(req, capPath);
}
capPath.add(cap);
}
public List clearCandidates(Requirement req, Collection caps)
{
List l = m_candidateMap.get(req);
l.removeAll(caps);
// Update candidates delta with the removed capabilities.
CopyOnWriteSet capPath = m_delta.get(req);
if (capPath == null) {
capPath = new CopyOnWriteSet();
m_delta.put(req, capPath);
}
capPath.addAll(caps);
return l;
}
/**
* Merges fragments into their hosts. It does this by wrapping all host
* modules and attaching their selected fragments, removing all unselected
* fragment modules, and replacing all occurrences of the original fragments
* in the internal data structures with the wrapped host modules instead.
* Thus, fragment capabilities and requirements are merged into the
* appropriate host and the candidates for the fragment now become
* candidates for the host. Likewise, any module depending on a fragment now
* depend on the host. Note that this process is sort of like
* multiplication, since one fragment that can attach to two hosts
* effectively gets multiplied across the two hosts. So, any modules being
* satisfied by the fragment will end up having the two hosts as potential
* candidates, rather than the single fragment.
*
* @throws org.osgi.service.resolver.ResolutionException if the removal of any unselected fragments
* result in the root module being unable to resolve.
*/
public void prepare(ResolveContext rc) throws ResolutionException
{
// Maps a host capability to a map containing its potential fragments;
// the fragment map maps a fragment symbolic name to a map that maps
// a version to a list of fragments requirements matching that symbolic
// name and version.
Map>>> hostFragments = Collections.emptyMap();
if (m_fragmentsPresent)
{
hostFragments = populateDependents();
}
// This method performs the following steps:
// 1. Select the fragments to attach to a given host.
// 2. Wrap hosts and attach fragments.
// 3. Remove any unselected fragments. This is necessary because
// other revisions may depend on the capabilities of unselected
// fragments, so we need to remove the unselected fragments and
// any revisions that depends on them, which could ultimately cause
// the entire resolve to fail.
// 4. Replace all fragments with any host it was merged into
// (effectively multiplying it).
// * This includes setting candidates for attached fragment
// requirements as well as replacing fragment capabilities
// with host's attached fragment capabilities.
// Steps 1 and 2
List hostResources = new ArrayList();
List unselectedFragments = new ArrayList();
for (Entry>>> hostEntry : hostFragments.entrySet())
{
// Step 1
Capability hostCap = hostEntry.getKey();
Map>> fragments =
hostEntry.getValue();
List selectedFragments = new ArrayList();
for (Entry>> fragEntry
: fragments.entrySet())
{
boolean isFirst = true;
for (Entry> versionEntry
: fragEntry.getValue().entrySet())
{
for (Requirement hostReq : versionEntry.getValue())
{
// Selecting the first fragment in each entry, which
// is equivalent to selecting the highest version of
// each fragment with a given symbolic name.
if (isFirst)
{
selectedFragments.add(hostReq.getResource());
isFirst = false;
}
// For any fragment that wasn't selected, remove the
// current host as a potential host for it and remove it
// as a dependent on the host. If there are no more
// potential hosts for the fragment, then mark it as
// unselected for later removal.
else
{
m_dependentMap.get(hostCap).remove(hostReq);
List hosts = m_candidateMap.get(hostReq);
hosts.remove(hostCap);
if (hosts.isEmpty())
{
unselectedFragments.add(hostReq.getResource());
}
}
}
}
}
// Step 2
WrappedResource wrappedHost =
new WrappedResource(hostCap.getResource(), selectedFragments);
hostResources.add(wrappedHost);
m_allWrappedHosts.put(hostCap.getResource(), wrappedHost);
}
// Step 3
for (Resource fragment : unselectedFragments)
{
removeResource(fragment,
new ResolutionException(
"Fragment was not selected for attachment: " + fragment));
}
// Step 4
for (WrappedResource hostResource : hostResources)
{
// Replaces capabilities from fragments with the capabilities
// from the merged host.
for (Capability c : hostResource.getCapabilities(null))
{
// Don't replace the host capability, since the fragment will
// really be attached to the original host, not the wrapper.
if (!c.getNamespace().equals(HostNamespace.HOST_NAMESPACE))
{
Capability origCap = ((HostedCapability) c).getDeclaredCapability();
// Note that you might think we could remove the original cap
// from the dependent map, but you can't since it may come from
// a fragment that is attached to multiple hosts, so each host
// will need to make their own copy.
CopyOnWriteSet dependents = m_dependentMap.get(origCap);
if (dependents != null)
{
dependents = new CopyOnWriteSet(dependents);
m_dependentMap.put(c, dependents);
for (Requirement r : dependents)
{
// We have synthesized hosted capabilities for all
// fragments that have been attached to hosts by
// wrapping the host bundle and their attached
// fragments. We need to use the ResolveContext to
// determine the proper priority order for hosted
// capabilities since the order may depend on the
// declaring host/fragment combination. However,
// internally we completely wrap the host revision
// and make all capabilities/requirements point back
// to the wrapped host not the declaring host. The
// ResolveContext expects HostedCapabilities to point
// to the declaring revision, so we need two separate
// candidate lists: one for the ResolveContext with
// HostedCapabilities pointing back to the declaring
// host and one for the resolver with HostedCapabilities
// pointing back to the wrapped host. We ask the
// ResolveContext to insert its appropriate HostedCapability
// into its list, then we mirror the insert into a
// shadow list with the resolver's HostedCapability.
// We only need to ask the ResolveContext to find
// the insert position for fragment caps since these
// were synthesized and we don't know their priority.
// However, in the resolver's candidate list we need
// to replace all caps with the wrapped caps, no
// matter if they come from the host or fragment,
// since we are completing replacing the declaring
// host and fragments with the wrapped host.
List cands = m_candidateMap.get(r);
if (!(cands instanceof ShadowList))
{
ShadowList shadow = new ShadowList(cands);
m_candidateMap.put(r, shadow);
cands = shadow;
}
// If the original capability is from a fragment, then
// ask the ResolveContext to insert it and update the
// shadow copy of the list accordingly.
if (!origCap.getResource().equals(hostResource.getDeclaredResource()))
{
List original = ((ShadowList) cands).getOriginal();
int removeIdx = original.indexOf(origCap);
if (removeIdx != -1)
{
original.remove(removeIdx);
cands.remove(removeIdx);
}
int insertIdx = rc.insertHostedCapability(
original,
new SimpleHostedCapability(
hostResource.getDeclaredResource(),
origCap));
cands.add(insertIdx, c);
}
// If the original capability is from the host, then
// we just need to replace it in the shadow list.
else
{
int idx = cands.indexOf(origCap);
cands.set(idx, c);
}
}
}
}
}
// Copy candidates for fragment requirements to the host.
for (Requirement r : hostResource.getRequirements(null))
{
Requirement origReq = ((WrappedRequirement) r).getDeclaredRequirement();
List cands = m_candidateMap.get(origReq);
if (cands != null)
{
m_candidateMap.put(r, new CopyOnWriteList(cands));
for (Capability cand : cands)
{
Set dependents = m_dependentMap.get(cand);
dependents.remove(origReq);
dependents.add(r);
}
}
}
}
// Lastly, verify that all mandatory revisions are still
// populated, since some might have become unresolved after
// selecting fragments/singletons.
for (Resource resource : m_mandatoryResources)
{
if (!isPopulated(resource))
{
throw getResolveException(resource);
}
}
populateSubstitutables();
m_candidateMap.concat();
m_dependentMap.concat();
}
// Maps a host capability to a map containing its potential fragments;
// the fragment map maps a fragment symbolic name to a map that maps
// a version to a list of fragments requirements matching that symbolic
// name and version.
private Map>>> populateDependents()
{
Map>>> hostFragments =
new HashMap>>>();
for (Entry> entry : m_candidateMap.entrySet())
{
Requirement req = entry.getKey();
List caps = entry.getValue();
for (Capability cap : caps)
{
// Record the requirement as dependent on the capability.
CopyOnWriteSet dependents = m_dependentMap.get(cap);
if (dependents == null)
{
dependents = new CopyOnWriteSet();
m_dependentMap.put(cap, dependents);
}
dependents.add(req);
// Keep track of hosts and associated fragments.
if (req.getNamespace().equals(HostNamespace.HOST_NAMESPACE))
{
String resSymName = Util.getSymbolicName(req.getResource());
Version resVersion = Util.getVersion(req.getResource());
Map>> fragments = hostFragments.get(cap);
if (fragments == null)
{
fragments = new HashMap>>();
hostFragments.put(cap, fragments);
}
Map> fragmentVersions = fragments.get(resSymName);
if (fragmentVersions == null)
{
fragmentVersions =
new TreeMap>(Collections.reverseOrder());
fragments.put(resSymName, fragmentVersions);
}
List actual = fragmentVersions.get(resVersion);
if (actual == null)
{
actual = new ArrayList();
if (resVersion == null)
resVersion = new Version(0, 0, 0);
fragmentVersions.put(resVersion, actual);
}
actual.add(req);
}
}
}
return hostFragments;
}
/**
* Removes a module from the internal data structures if it wasn't selected
* as a fragment or a singleton. This process may cause other modules to
* become unresolved if they depended on the module's capabilities and there
* is no other candidate.
*
* @param resource the module to remove.
* @throws ResolutionException if removing the module caused the resolve to
* fail.
*/
private void removeResource(Resource resource, ResolutionException ex)
throws ResolutionException
{
// Add removal reason to result cache.
m_populateResultCache.put(resource, ex);
// Remove from dependents.
Set unresolvedResources = new HashSet();
remove(resource, unresolvedResources);
// Remove dependents that failed as a result of removing revision.
while (!unresolvedResources.isEmpty())
{
Iterator it = unresolvedResources.iterator();
resource = it.next();
it.remove();
remove(resource, unresolvedResources);
}
}
/**
* Removes the specified module from the internal data structures, which
* involves removing its requirements and its capabilities. This may cause
* other modules to become unresolved as a result.
*
* @param resource the module to remove.
* @param unresolvedResources a list to containing any additional modules
* that that became unresolved as a result of removing this module and will
* also need to be removed.
* @throws ResolutionException if removing the module caused the resolve to
* fail.
*/
private void remove(Resource resource, Set unresolvedResources)
throws ResolutionException
{
for (Requirement r : resource.getRequirements(null))
{
remove(r);
}
for (Capability c : resource.getCapabilities(null))
{
remove(c, unresolvedResources);
}
}
/**
* Removes a requirement from the internal data structures.
*
* @param req the requirement to remove.
*/
private void remove(Requirement req)
{
List candidates = m_candidateMap.remove(req);
if (candidates != null)
{
for (Capability cap : candidates)
{
Set dependents = m_dependentMap.get(cap);
if (dependents != null)
{
dependents.remove(req);
}
}
}
}
/**
* Removes a capability from the internal data structures. This may cause
* other modules to become unresolved as a result.
*
* @param c the capability to remove.
* @param unresolvedResources a list to containing any additional modules
* that that became unresolved as a result of removing this module and will
* also need to be removed.
* @throws ResolutionException if removing the module caused the resolve to
* fail.
*/
private void remove(Capability c, Set unresolvedResources)
throws ResolutionException
{
Set dependents = m_dependentMap.remove(c);
if (dependents != null)
{
for (Requirement r : dependents)
{
List candidates = m_candidateMap.get(r);
candidates.remove(c);
if (candidates.isEmpty())
{
m_candidateMap.remove(r);
if (!Util.isOptional(r))
{
String msg = "Unable to resolve " + r.getResource()
+ ": missing requirement " + r;
m_populateResultCache.put(
r.getResource(),
new ResolutionException(msg, null, Collections.singleton(r)));
unresolvedResources.add(r.getResource());
}
}
}
}
}
/**
* Creates a copy of the Candidates object. This is used for creating
* permutations when package space conflicts are discovered.
*
* @return copy of this Candidates object.
*/
public Candidates copy()
{
return new Candidates(
m_mandatoryResources,
m_dependentMap.deepClone(),
m_candidateMap.deepClone(),
m_allWrappedHosts,
m_populateResultCache,
m_fragmentsPresent,
m_validOnDemandResources,
m_subtitutableMap,
m_delta.deepClone());
}
public void dump(ResolveContext rc)
{
// Create set of all revisions from requirements.
Set resources = new CopyOnWriteSet();
for (Entry> entry
: m_candidateMap.entrySet())
{
resources.add(entry.getKey().getResource());
}
// Now dump the revisions.
System.out.println("=== BEGIN CANDIDATE MAP ===");
for (Resource resource : resources)
{
Wiring wiring = rc.getWirings().get(resource);
System.out.println(" " + resource
+ " (" + ((wiring != null) ? "RESOLVED)" : "UNRESOLVED)"));
List reqs = (wiring != null)
? wiring.getResourceRequirements(null)
: resource.getRequirements(null);
for (Requirement req : reqs)
{
List candidates = m_candidateMap.get(req);
if ((candidates != null) && (candidates.size() > 0))
{
System.out.println(" " + req + ": " + candidates);
}
}
reqs = (wiring != null)
? Util.getDynamicRequirements(wiring.getResourceRequirements(null))
: Util.getDynamicRequirements(resource.getRequirements(null));
for (Requirement req : reqs)
{
List candidates = m_candidateMap.get(req);
if ((candidates != null) && (candidates.size() > 0))
{
System.out.println(" " + req + ": " + candidates);
}
}
}
System.out.println("=== END CANDIDATE MAP ===");
}
public void permutate(Requirement req, List permutations)
{
if (!Util.isMultiple(req) && canRemoveCandidate(req))
{
Candidates perm = copy();
perm.removeFirstCandidate(req);
permutations.add(perm);
}
}
public boolean canRemoveCandidate(Requirement req)
{
List candidates = m_candidateMap.get(req);
return ((candidates != null) && (candidates.size() > 1 || Util.isOptional(req)));
}
public void permutateIfNeeded(Requirement req, List permutations)
{
List candidates = m_candidateMap.get(req);
if ((candidates != null) && (candidates.size() > 1))
{
// Check existing permutations to make sure we haven't
// already permutated this requirement. This check for
// duplicate permutations is simplistic. It assumes if
// there is any permutation that contains a different
// initial candidate for the requirement in question,
// then it has already been permutated.
boolean permutated = false;
for (Candidates existingPerm : permutations)
{
List existingPermCands = existingPerm.m_candidateMap.get(req);
if (existingPermCands != null && !existingPermCands.get(0).equals(candidates.get(0)))
{
permutated = true;
break;
}
}
// If we haven't already permutated the existing
// import, do so now.
if (!permutated)
{
permutate(req, permutations);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy