All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.RandomMatrices_CDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row;

import org.ejml.data.CMatrixD1;
import org.ejml.data.CMatrixRMaj;

import java.util.Random;

/**
 * Contains a list of functions for creating random row complex matrices and vectors with different structures.
 *
 * @author Peter Abeles
 */
public class RandomMatrices_CDRM {
    /**
     * 

* Returns a matrix where all the elements are selected independently from * a uniform distribution between -1 and 1 inclusive. *

* * @param numRow Number of rows in the new matrix. * @param numCol Number of columns in the new matrix. * @param rand Random number generator used to fill the matrix. * @return The randomly generated matrix. */ public static CMatrixRMaj rectangle(int numRow , int numCol , Random rand ) { return rectangle(numRow,numCol,-1,1,rand); } /** *

* Returns a matrix where all the elements are selected independently from * a uniform distribution between 'min' and 'max' inclusive. *

* * @param numRow Number of rows in the new matrix. * @param numCol Number of columns in the new matrix. * @param min The minimum value each element can be. * @param max The maximum value each element can be. * @param rand Random number generator used to fill the matrix. * @return The randomly generated matrix. */ public static CMatrixRMaj rectangle(int numRow , int numCol , float min , float max , Random rand ) { CMatrixRMaj mat = new CMatrixRMaj(numRow,numCol); fillUniform(mat,min,max,rand); return mat; } /** *

* Sets each element in the matrix to a value drawn from an uniform distribution from 0 to 1 inclusive. *

* * @param mat The matrix who is to be randomized. Modified. * @param rand Random number generator used to fill the matrix. */ public static void fillUniform(CMatrixRMaj mat , Random rand ) { fillUniform(mat,0,1,rand); } /** *

* Sets each element in the matrix to a value drawn from an uniform distribution from 'min' to 'max' inclusive. *

* * @param min The minimum value each element can be. * @param max The maximum value each element can be. * @param mat The matrix who is to be randomized. Modified. * @param rand Random number generator used to fill the matrix. */ public static void fillUniform(CMatrixD1 mat , float min , float max , Random rand ) { float d[] = mat.getData(); int size = mat.getDataLength(); float r = max-min; for( int i = 0; i < size; i++ ) { d[i] = r*rand.nextFloat()+min; } } /** * Creates a random symmetric positive definite matrix. * * @param width The width of the square matrix it returns. * @param rand Random number generator used to make the matrix. * @return The random symmetric positive definite matrix. */ public static CMatrixRMaj hermitianPosDef(int width, Random rand) { // This is not formally proven to work. It just seems to work. CMatrixRMaj a = RandomMatrices_CDRM.rectangle(width,1,rand); CMatrixRMaj b = new CMatrixRMaj(1,width); CMatrixRMaj c = new CMatrixRMaj(width,width); CommonOps_CDRM.transposeConjugate(a,b); CommonOps_CDRM.mult(a, b, c); for( int i = 0; i < width; i++ ) { c.data[2*(i*width+i)] += 1; } return c; } /** * Creates a random Hermitian matrix with elements from min to max value. * * @param length Width and height of the matrix. * @param min Minimum value an element can have. * @param max Maximum value an element can have. * @param rand Random number generator. * @return A symmetric matrix. */ public static CMatrixRMaj hermitian(int length, float min, float max, Random rand) { CMatrixRMaj A = new CMatrixRMaj(length,length); fillHermitian(A, min, max, rand); return A; } /** * Assigns the provided square matrix to be a random Hermitian matrix with elements from min to max value. * * @param A The matrix that is to be modified. Must be square. Modified. * @param min Minimum value an element can have. * @param max Maximum value an element can have. * @param rand Random number generator. */ public static void fillHermitian(CMatrixRMaj A, float min, float max, Random rand) { if( A.numRows != A.numCols ) throw new IllegalArgumentException("A must be a square matrix"); float range = max-min; int length = A.numRows; for( int i = 0; i < length; i++ ) { A.set(i,i,rand.nextFloat()*range + min,0); for( int j = i+1; j < length; j++ ) { float real = rand.nextFloat()*range + min; float imaginary = rand.nextFloat()*range + min; A.set(i,j,real,imaginary); A.set(j,i,real,-imaginary); } } } // /** // * Creates an upper triangular matrix whose values are selected from a uniform distribution. If hessenberg // * is greater than zero then a hessenberg matrix of the specified degree is created instead. // * // * @param dimen Number of rows and columns in the matrix.. // * @param hessenberg 0 for triangular matrix and > 0 for hessenberg matrix. // * @param min minimum value an element can be. // * @param max maximum value an element can be. // * @param rand random number generator used. // * @return The randomly generated matrix. // */ // public static CMatrixRMaj createUpperTriangle( int dimen , int hessenberg , float min , float max , Random rand ) // { // if( hessenberg < 0 ) // throw new RuntimeException("hessenberg must be more than or equal to 0"); // // float range = max-min; // // CMatrixRMaj A = new CMatrixRMaj(dimen,dimen); // // for( int i = 0; i < dimen; i++ ) { // int start = i <= hessenberg ? 0 : i-hessenberg; // // for( int j = start; j < dimen; j++ ) { // float real = rand.nextFloat()*range + min; // float imaginary = rand.nextFloat()*range + min; // // A.set(i,j, real, imaginary); // } // // } // // return A; // } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy