All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.SpecializedOps_CDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row;

import org.ejml.data.Complex_F32;
import org.ejml.data.CMatrixRMaj;
import org.ejml.dense.row.mult.VectorVectorMult_CDRM;
import org.ejml.interfaces.linsol.LinearSolverDense;

/**
 * @author Peter Abeles
 */
public class SpecializedOps_CDRM {

    /**
     * 

* Creates a reflector from the provided vector.
*
* Q = I - γ u uT
* γ = 2/||u||2 *

* * @param u A vector. Not modified. * @return An orthogonal reflector. */ public static CMatrixRMaj createReflector(CMatrixRMaj u ) { if( !MatrixFeatures_CDRM.isVector(u)) throw new IllegalArgumentException("u must be a vector"); float norm = NormOps_CDRM.normF(u); float gamma = -2.0f/(norm*norm); CMatrixRMaj Q = CommonOps_CDRM.identity(u.getNumElements()); CommonOps_CDRM.multAddTransB(gamma,0,u,u,Q); return Q; } /** *

* Creates a reflector from the provided vector and gamma.
*
* Q = I - γ u uH
*

* * @param u A vector. Not modified. * @param gamma To produce a reflector gamma needs to be equal to 2/||u||. * @return An orthogonal reflector. */ public static CMatrixRMaj createReflector(CMatrixRMaj u , float gamma) { if( !MatrixFeatures_CDRM.isVector(u)) throw new IllegalArgumentException("u must be a vector"); CMatrixRMaj Q = CommonOps_CDRM.identity(u.getNumElements()); CommonOps_CDRM.multAddTransB(-gamma,0,u,u,Q); return Q; } /** *

* Creates a pivot matrix that exchanges the rows in a matrix: *
* A' = P*A
*

*

* For example, if element 0 in 'pivots' is 2 then the first row in A' will be the 3rd row in A. *

* * @param ret If null then a new matrix is declared otherwise the results are written to it. Is modified. * @param pivots Specifies the new order of rows in a matrix. * @param numPivots How many elements in pivots are being used. * @param transposed If the transpose of the matrix is returned. * @return A pivot matrix. */ public static CMatrixRMaj pivotMatrix(CMatrixRMaj ret, int pivots[], int numPivots, boolean transposed ) { if( ret == null ) { ret = new CMatrixRMaj(numPivots, numPivots); } else { if( ret.numCols != numPivots || ret.numRows != numPivots ) throw new IllegalArgumentException("Unexpected matrix dimension"); CommonOps_CDRM.fill(ret, 0,0); } if( transposed ) { for( int i = 0; i < numPivots; i++ ) { ret.set(pivots[i],i,1,0); } } else { for( int i = 0; i < numPivots; i++ ) { ret.set(i,pivots[i],1,0); } } return ret; } /** *

* Returns the magnitude squared of the complex element along the diagonal with the largest magnitude
*
* Max{ |aij|^2 } for all i and j
*

* * @param a A matrix. Not modified. * @return The max magnitude squared */ public static float elementDiagMaxMagnitude2(CMatrixRMaj a) { final int size = Math.min(a.numRows,a.numCols); int rowStride = a.getRowStride(); float max = 0; for( int i = 0; i < size; i++ ) { int index = i*rowStride + i*2; float real = a.data[index]; float imaginary = a.data[index+1]; float m = real*real + imaginary*imaginary; if( m > max ) { max = m; } } return max; } /** * Computes the quality of a triangular matrix, where the quality of a matrix * is defined in {@link LinearSolverDense#quality()}. In * this situation the quality is the magnitude of the product of * each diagonal element divided by the magnitude of the largest diagonal element. * If all diagonal elements are zero then zero is returned. * * @return the quality of the system. */ public static float qualityTriangular(CMatrixRMaj T) { int N = Math.min(T.numRows,T.numCols); float max = elementDiagMaxMagnitude2(T); if( max == 0.0f ) return 0.0f; max = (float)Math.sqrt(max); int rowStride = T.getRowStride(); float qualityR = 1.0f; float qualityI = 0.0f; for( int i = 0; i < N; i++ ) { int index = i*rowStride + i*2; float real = T.data[index]/max; float imaginary = T.data[index]/max; float r = qualityR*real - qualityI*imaginary; float img = qualityR*imaginary + real*qualityI; qualityR = r; qualityI = img; } return (float)Math.sqrt(qualityR*qualityR + qualityI*qualityI); } /** * Q = I - gamma*u*uH */ public static CMatrixRMaj householder(CMatrixRMaj u , float gamma ) { int N = u.getDataLength()/2; // u*u^H CMatrixRMaj uut = new CMatrixRMaj(N,N); VectorVectorMult_CDRM.outerProdH(u, u, uut); // foo = -gamma*u*u^H CommonOps_CDRM.elementMultiply(uut,-gamma,0,uut); // I + foo for (int i = 0; i < N; i++) { int index = (i*uut.numCols+i)*2; uut.data[index] = 1 + uut.data[index]; } return uut; } /** * Computes the householder vector used in QR decomposition. * * u = x / max(x) * u(0) = u(0) + |u| * u = u / u(0) * * @param x Input vector. Unmodified. * @return The found householder reflector vector */ public static CMatrixRMaj householderVector(CMatrixRMaj x ) { CMatrixRMaj u = x.copy(); float max = CommonOps_CDRM.elementMaxAbs(u); CommonOps_CDRM.elementDivide(u, max, 0, u); float nx = NormOps_CDRM.normF(u); Complex_F32 c = new Complex_F32(); u.get(0,0,c); float realTau,imagTau; if( c.getMagnitude() == 0 ) { realTau = nx; imagTau = 0; } else { realTau = c.real/c.getMagnitude()*nx; imagTau = c.imaginary/c.getMagnitude()*nx; } u.set(0,0,c.real + realTau,c.imaginary + imagTau); CommonOps_CDRM.elementDivide(u,u.getReal(0,0),u.getImag(0,0),u); return u; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy