org.ejml.UtilEjml Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ejml-core Show documentation
Show all versions of ejml-core Show documentation
A fast and easy to use dense and sparse matrix linear algebra library written in Java.
/*
* Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
*
* This file is part of Efficient Java Matrix Library (EJML).
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.ejml;
import org.ejml.data.DMatrixRMaj;
import org.ejml.data.DMatrixSparseCSC;
import org.ejml.data.FMatrixRMaj;
import org.ejml.ops.ConvertDMatrixSparse;
import java.util.Arrays;
import java.util.Comparator;
/**
* Various functions that are useful but don't have a clear location that they belong in.
*
* @author Peter Abeles
*/
public class UtilEjml {
/**
* Version string used to indicate which version of EJML is being used.
*/
public static String VERSION = "0.31";
public static double EPS = Math.pow(2,-52);
public static float F_EPS = (float)Math.pow(2,-21);
public static double PI = Math.PI;
public static double PI2 = 2.0*Math.PI;
public static double PId2 = Math.PI/2.0;
public static float F_PI = (float)Math.PI;
public static float F_PI2 = (float)(2.0*Math.PI);
public static float F_PId2 = (float)(Math.PI/2.0);
// tolerances for unit tests
public static float TEST_F32 = 1e-4f;
public static double TEST_F64 = 1e-8;
public static float TESTP_F32 = 1e-6f;
public static double TESTP_F64 = 1e-12;
public static float TEST_F32_SQ = (float)Math.sqrt(TEST_F32);
public static double TEST_F64_SQ = Math.sqrt(TEST_F64);
// The maximize size it will do inverse on
public static int maxInverseSize = 5;
public static boolean isUncountable( double val ) {
return Double.isNaN(val) || Double.isInfinite(val);
}
public static boolean isUncountable( float val ) {
return Float.isNaN(val) || Float.isInfinite(val);
}
public static void memset( double[] data , double val , int length ) {
for( int i = 0; i < length; i++ ) {
data[i] = val;
}
}
public static void memset( int[] data , int val , int length ) {
for( int i = 0; i < length; i++ ) {
data[i] = val;
}
}
public static void setnull( T[] array ) {
for( int i = 0; i < array.length; i++ ) {
array[i] = null;
}
}
public static double max( double array[], int start , int length ) {
double max = array[start];
final int end = start+length;
for( int i = start+1; i < end; i++ ) {
double v = array[i];
if( v > max ) {
max = v;
}
}
return max;
}
public static float max( float array[], int start , int length ) {
float max = array[start];
final int end = start+length;
for( int i = start+1; i < end; i++ ) {
float v = array[i];
if( v > max ) {
max = v;
}
}
return max;
}
/**
* Give a string of numbers it returns a DenseMatrix
*/
public static DMatrixRMaj parse_DDRM(String s , int numColumns )
{
String []vals = s.split("(\\s)+");
// there is the possibility the first element could be empty
int start = vals[0].isEmpty() ? 1 : 0;
// covert it from string to doubles
int numRows = (vals.length-start) / numColumns;
DMatrixRMaj ret = new DMatrixRMaj(numRows,numColumns);
int index = start;
for( int i = 0; i < numRows; i++ ) {
for( int j = 0; j < numColumns; j++ ) {
ret.set(i,j, Double.parseDouble(vals[ index++ ]));
}
}
return ret;
}
/**
* Give a string of numbers it returns a DenseMatrix
*/
public static FMatrixRMaj parse_FDRM(String s , int numColumns )
{
String []vals = s.split("(\\s)+");
// there is the possibility the first element could be empty
int start = vals[0].isEmpty() ? 1 : 0;
// covert it from string to doubles
int numRows = (vals.length-start) / numColumns;
FMatrixRMaj ret = new FMatrixRMaj(numRows,numColumns);
int index = start;
for( int i = 0; i < numRows; i++ ) {
for( int j = 0; j < numColumns; j++ ) {
ret.set(i,j, Float.parseFloat(vals[ index++ ]));
}
}
return ret;
}
public static Integer[] sortByIndex( final double []data , int size ) {
Integer[] idx = new Integer[size];
for( int i = 0; i < size; i++ ) {
idx[i] = i;
}
Arrays.sort(idx, new Comparator() {
@Override public int compare(final Integer o1, final Integer o2) {
return Double.compare(data[o1], data[o2]);
}
});
return idx;
}
public static DMatrixSparseCSC parse_DSCC(String s, int numColumns) {
DMatrixRMaj tmp = parse_DDRM(s,numColumns);
return ConvertDMatrixSparse.convert(tmp,(DMatrixSparseCSC)null);
}
}