All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.linsol.qr.LinearSolverQrHouse_DDRM Maven / Gradle / Ivy

/*
 * Copyright (c) 2009-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row.linsol.qr;

import org.ejml.data.DMatrixRMaj;
import org.ejml.dense.row.SpecializedOps_DDRM;
import org.ejml.dense.row.decomposition.TriangularSolver_DDRM;
import org.ejml.dense.row.decomposition.qr.QRDecompositionHouseholder_DDRM;
import org.ejml.dense.row.linsol.LinearSolverAbstract_DDRM;
import org.ejml.interfaces.decomposition.QRDecomposition;


/**
 * 

* QR decomposition can be used to solve for systems. However, this is not as computationally efficient * as LU decomposition and costs about 3n2 flops. *

*

* It solve for x by first multiplying b by the transpose of Q then solving for the result. *
* QRx=b
* Rx=Q^T b
*

* * @author Peter Abeles */ public class LinearSolverQrHouse_DDRM extends LinearSolverAbstract_DDRM { private QRDecompositionHouseholder_DDRM decomposer; private double []a,u; private int maxRows = -1; private DMatrixRMaj QR; private double gammas[]; /** * Creates a linear solver that uses QR decomposition. */ public LinearSolverQrHouse_DDRM() { decomposer = new QRDecompositionHouseholder_DDRM(); } public void setMaxSize( int maxRows ) { this.maxRows = maxRows; a = new double[ maxRows ]; u = new double[ maxRows ]; } /** * Performs QR decomposition on A * * @param A not modified. */ @Override public boolean setA(DMatrixRMaj A) { if( A.numRows > maxRows ) { setMaxSize(A.numRows); } _setA(A); if( !decomposer.decompose(A) ) return false; gammas = decomposer.getGammas(); QR = decomposer.getQR(); return true; } @Override public /**/double quality() { return SpecializedOps_DDRM.qualityTriangular(QR); } /** * Solves for X using the QR decomposition. * * @param B A matrix that is n by m. Not modified. * @param X An n by m matrix where the solution is writen to. Modified. */ @Override public void solve(DMatrixRMaj B, DMatrixRMaj X) { if( B.numRows != numRows ) throw new IllegalArgumentException("Unexpected dimensions for X: X rows = "+X.numRows+" expected = "+numCols); X.reshape(numCols,B.numCols); int BnumCols = B.numCols; // solve each column one by one for( int colB = 0; colB < BnumCols; colB++ ) { // make a copy of this column in the vector for( int i = 0; i < numRows; i++ ) { a[i] = B.data[i*BnumCols + colB]; } // Solve Qa=b // a = Q'b // a = Q_{n-1}...Q_2*Q_1*b // // Q_n*b = (I-gamma*u*u^T)*b = b - u*(gamma*U^T*b) for( int n = 0; n < numCols; n++ ) { u[n] = 1; double ub = a[n]; // U^T*b for( int i = n+1; i < numRows; i++ ) { ub += (u[i] = QR.unsafe_get(i,n))*a[i]; } // gamma*U^T*b ub *= gammas[n]; for( int i = n; i < numRows; i++ ) { a[i] -= u[i]*ub; } } // solve for Rx = b using the standard upper triangular solver TriangularSolver_DDRM.solveU(QR.data,a,numCols); // save the results for( int i = 0; i < numCols; i++ ) { X.data[i*X.numCols+colB] = a[i]; } } } @Override public boolean modifiesA() { return false; } @Override public boolean modifiesB() { return false; } @Override public QRDecomposition getDecomposition() { return decomposer; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy