All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.misc.NaiveDeterminant Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row.misc;

import org.ejml.data.DMatrixRMaj;
import org.ejml.data.FMatrixRMaj;


/**
 * Computes the determinant using different very simple and computationally expensive algorithms.
 *
 * @author Peter Abeles
 */
public class NaiveDeterminant {

    /**
     * 

* Computes the determinant of the matrix using Leibniz's formula *

* *

* A direct implementation of Leibniz determinant equation. This is of little practical use * because of its slow runtime of O(n!) where n is the width of the matrix. LU decomposition * should be used instead. One advantage of Leibniz's equation is how simplistic it is. *

*

* det(A) = Sum( σ in Sn ; sgn(σ) Prod( i = 1 to n ; ai,σ(i)) )
*

*
    *
  • sgn is the sign function of permutations. +1 or -1 for even and odd permutations
  • *
  • a set of permutations. if n=3 then the possible permutations are (1,2,3) (1,3,2), (3,2,1), ... etc
  • *
* * @param mat The matrix whose determinant is computed. * @return The value of the determinant */ public static double leibniz( DMatrixRMaj mat ) { PermuteArray perm = new PermuteArray( mat.numCols ); double total = 0; int p[] = perm.next(); while( p != null ) { double prod = 1; for( int i = 0; i < mat.numRows; i++ ) { prod *= mat.get(i,p[i]); } total += perm.sgn()*prod; p = perm.next(); } return total; } /** *

* A simple and inefficient algorithm for computing the determinant. This should never be used. * It is at least two orders of magnitude slower than {@link DeterminantFromMinor_DDRM}. This is included * to provide a point of comparison for other algorithms. *

* @param mat The matrix that the determinant is to be computed from * @return The determinant. */ public static double recursive( DMatrixRMaj mat ) { if(mat.numRows == 1) { return mat.get(0); } else if(mat.numRows == 2) { return mat.get(0) * mat.get(3) - mat.get(1) * mat.get(2); } else if( mat.numRows == 3 ) { return UnrolledDeterminantFromMinor_DDRM.det3(mat); } double result = 0; for(int i = 0; i < mat.numRows; i++) { DMatrixRMaj minorMat = new DMatrixRMaj(mat.numRows-1,mat.numRows-1); for(int j = 1; j < mat.numRows; j++) { for(int k = 0; k < mat.numRows; k++) { if(k < i) { minorMat.set(j-1,k,mat.get(j,k)); } else if(k > i) { minorMat.set(j-1,k-1,mat.get(j,k)); } } } if( i % 2 == 0 ) result += mat.get(0,i) * recursive(minorMat); else result -= mat.get(0,i) * recursive(minorMat); } return result; } public static float recursive( FMatrixRMaj mat ) { if(mat.numRows == 1) { return mat.get(0); } else if(mat.numRows == 2) { return mat.get(0) * mat.get(3) - mat.get(1) * mat.get(2); } else if( mat.numRows == 3 ) { return UnrolledDeterminantFromMinor_FDRM.det3(mat); } float result = 0; for(int i = 0; i < mat.numRows; i++) { FMatrixRMaj minorMat = new FMatrixRMaj(mat.numRows-1,mat.numRows-1); for(int j = 1; j < mat.numRows; j++) { for(int k = 0; k < mat.numRows; k++) { if(k < i) { minorMat.set(j-1,k,mat.get(j,k)); } else if(k > i) { minorMat.set(j-1,k-1,mat.get(j,k)); } } } if( i % 2 == 0 ) result += mat.get(0,i) * recursive(minorMat); else result -= mat.get(0,i) * recursive(minorMat); } return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy