All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.mult.MatrixMatrixMult_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row.mult;

import org.ejml.MatrixDimensionException;
import org.ejml.data.FMatrix1Row;
import org.ejml.dense.row.CommonOps_FDRM;

/**
 * 

* This class contains various types of matrix matrix multiplication operations for {@link FMatrix1Row}. *

*

* Two algorithms that are equivalent can often have very different runtime performance. * This is because of how modern computers uses fast memory caches to speed up reading/writing to data. * Depending on the order in which variables are processed different algorithms can run much faster than others, * even if the number of operations is the same. *

* *

* Algorithms that are labeled as 'reorder' are designed to avoid caching jumping issues, some times at the cost * of increasing the number of operations. This is important for large matrices. The straight forward * implementation seems to be faster for small matrices. *

* *

* Algorithms that are labeled as 'aux' use an auxiliary array of length n. This array is used to create * a copy of an out of sequence column vector that is referenced several times. This reduces the number * of cache misses. If the 'aux' parameter passed in is null then the array is declared internally. *

* *

* Typically the straight forward implementation runs about 30% faster on smaller matrices and * about 5 times slower on larger matrices. This is all computer architecture and matrix shape/size specific. *

* *
******** IMPORTANT **********
*

This class was auto generated using org.ejml.dense.row.mult.GeneratorMatrixMatrixMult

* * @author Peter Abeles */ @SuppressWarnings("Duplicates") public class MatrixMatrixMult_FDRM { /** * @see CommonOps_FDRM#mult( FMatrix1Row, FMatrix1Row, FMatrix1Row) */ public static void mult_reorder(FMatrix1Row a , FMatrix1Row b , FMatrix1Row c ) { if( a == c || b == c ) throw new IllegalArgumentException("Neither 'a' or 'b' can be the same matrix as 'c'"); else if( a.numCols != b.numRows ) { throw new MatrixDimensionException("The 'a' and 'b' matrices do not have compatible dimensions"); } else if( a.numRows != c.numRows || b.numCols != c.numCols ) { throw new MatrixDimensionException("The results matrix does not have the desired dimensions"); } if( a.numCols == 0 || a.numRows == 0 ) { CommonOps_FDRM.fill(c,0); return; } float valA; int indexCbase= 0; int endOfKLoop = b.numRows*b.numCols; for( int i = 0; i < a.numRows; i++ ) { int indexA = i*a.numCols; // need to assign c.data to a value initially int indexB = 0; int indexC = indexCbase; int end = indexB + b.numCols; valA = a.get(indexA++); while( indexB < end ) { c.set(indexC++ , valA*b.get(indexB++)); } // now add to it while( indexB != endOfKLoop ) { // k loop indexC = indexCbase; end = indexB + b.numCols; valA = a.get(indexA++); while( indexB < end ) { // j loop c.plus(indexC++ , valA*b.get(indexB++)); } } indexCbase += c.numCols; } } /** * @see CommonOps_FDRM#mult( FMatrix1Row, FMatrix1Row, FMatrix1Row) */ public static void mult_small(FMatrix1Row a , FMatrix1Row b , FMatrix1Row c ) { if( a == c || b == c ) throw new IllegalArgumentException("Neither 'a' or 'b' can be the same matrix as 'c'"); else if( a.numCols != b.numRows ) { throw new MatrixDimensionException("The 'a' and 'b' matrices do not have compatible dimensions"); } else if( a.numRows != c.numRows || b.numCols != c.numCols ) { throw new MatrixDimensionException("The results matrix does not have the desired dimensions"); } int aIndexStart = 0; int cIndex = 0; for( int i = 0; i < a.numRows; i++ ) { for( int j = 0; j < b.numCols; j++ ) { float total = 0; int indexA = aIndexStart; int indexB = j; int end = indexA + b.numRows; while( indexA < end ) { total += a.get(indexA++) * b.get(indexB); indexB += b.numCols; } c.set( cIndex++ , total ); } aIndexStart += a.numCols; } } /** * @see CommonOps_FDRM#mult( FMatrix1Row, FMatrix1Row, FMatrix1Row) */ public static void mult_aux(FMatrix1Row a , FMatrix1Row b , FMatrix1Row c , float []aux ) { if( a == c || b == c ) throw new IllegalArgumentException("Neither 'a' or 'b' can be the same matrix as 'c'"); else if( a.numCols != b.numRows ) { throw new MatrixDimensionException("The 'a' and 'b' matrices do not have compatible dimensions"); } else if( a.numRows != c.numRows || b.numCols != c.numCols ) { throw new MatrixDimensionException("The results matrix does not have the desired dimensions"); } if( aux == null ) aux = new float[ b.numRows ]; for( int j = 0; j < b.numCols; j++ ) { // create a copy of the column in B to avoid cache issues for( int k = 0; k < b.numRows; k++ ) { aux[k] = b.unsafe_get(k,j); } int indexA = 0; for( int i = 0; i < a.numRows; i++ ) { float total = 0; for( int k = 0; k < b.numRows; ) { total += a.get(indexA++)*aux[k++]; } c.set( i*c.numCols+j , total ); } } } /** * @see CommonOps_FDRM#multTransA( FMatrix1Row, FMatrix1Row, FMatrix1Row) */ public static void multTransA_reorder(FMatrix1Row a , FMatrix1Row b , FMatrix1Row c ) { if( a == c || b == c ) throw new IllegalArgumentException("Neither 'a' or 'b' can be the same matrix as 'c'"); else if( a.numRows != b.numRows ) { throw new MatrixDimensionException("The 'a' and 'b' matrices do not have compatible dimensions"); } else if( a.numCols != c.numRows || b.numCols != c.numCols ) { throw new MatrixDimensionException("The results matrix does not have the desired dimensions"); } if( a.numCols == 0 || a.numRows == 0 ) { CommonOps_FDRM.fill(c,0); return; } float valA; for( int i = 0; i < a.numCols; i++ ) { int indexC_start = i*c.numCols; // first assign R valA = a.get(i); int indexB = 0; int end = indexB+b.numCols; int indexC = indexC_start; while( indexB




© 2015 - 2024 Weber Informatics LLC | Privacy Policy