All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.MatrixFeatures_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2017, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row;

import org.ejml.UtilEjml;
import org.ejml.data.*;
import org.ejml.dense.row.decomposition.chol.CholeskyDecompositionInner_FDRM;
import org.ejml.dense.row.factory.DecompositionFactory_FDRM;
import org.ejml.dense.row.mult.VectorVectorMult_FDRM;
import org.ejml.interfaces.decomposition.EigenDecomposition_F32;
import org.ejml.interfaces.decomposition.LUDecomposition;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F32;


/**
 * 

* Used to compute features that describe the structure of a matrix. *

* *

* Unless explicitly stated otherwise it is assumed that the elements of input matrices * contain only real numbers. If an element is NaN or infinite then the behavior is undefined. * See IEEE 754 for more information on this issue. *

* * @author Peter Abeles */ public class MatrixFeatures_FDRM { /** * Checks to see if any element in the matrix is NaN. * * @param m A matrix. Not modified. * @return True if any element in the matrix is NaN. */ public static boolean hasNaN( FMatrixD1 m ) { int length = m.getNumElements(); for( int i = 0; i < length; i++ ) { if( Float.isNaN(m.get(i))) return true; } return false; } /** * Checks to see if any element in the matrix is NaN of Infinite. * * @param m A matrix. Not modified. * @return True if any element in the matrix is NaN of Infinite. */ public static boolean hasUncountable( FMatrixD1 m ) { int length = m.getNumElements(); for( int i = 0; i < length; i++ ) { float a = m.get(i); if( Float.isNaN(a) || Float.isInfinite(a)) return true; } return false; } /** * Checks to see all the elements in the matrix are zeros * * @param m A matrix. Not modified. * @return True if all elements are zeros or false if not */ public static boolean isZeros(FMatrixD1 m , float tol ) { int length = m.getNumElements(); for( int i = 0; i < length; i++ ) { if( Math.abs(m.get(i)) > tol ) return false; } return true; } /** * Checks to see if the matrix is a vector or not. * * @param mat A matrix. Not modified. * * @return True if it is a vector and false if it is not. */ public static boolean isVector( Matrix mat ) { return (mat.getNumCols() == 1 || mat.getNumRows() == 1); } /** *

* Checks to see if the matrix is positive definite. *

*

* xT A x > 0
* for all x where x is a non-zero vector and A is a symmetric matrix. *

* * @param A square symmetric matrix. Not modified. * * @return True if it is positive definite and false if it is not. */ public static boolean isPositiveDefinite( FMatrixRMaj A ) { if( !isSquare(A)) return false; CholeskyDecompositionInner_FDRM chol = new CholeskyDecompositionInner_FDRM(true); if( chol.inputModified() ) A = A.copy(); return chol.decompose(A); } /** *

* Checks to see if the matrix is positive semidefinite: *

*

* xT A x ≥ 0
* for all x where x is a non-zero vector and A is a symmetric matrix. *

* * @param A square symmetric matrix. Not modified. * * @return True if it is positive semidefinite and false if it is not. */ public static boolean isPositiveSemidefinite( FMatrixRMaj A ) { if( !isSquare(A)) return false; EigenDecomposition_F32 eig = DecompositionFactory_FDRM.eig(A.numCols,false); if( eig.inputModified() ) A = A.copy(); eig.decompose(A); for( int i = 0; i < A.numRows; i++ ) { Complex_F32 v = eig.getEigenvalue(i); if( v.getReal() < 0 ) return false; } return true; } /** * Checks to see if it is a square matrix. A square matrix has * the same number of rows and columns. * * @param mat A matrix. Not modified. * @return True if it is a square matrix and false if it is not. */ public static boolean isSquare( FMatrixD1 mat ) { return mat.numCols == mat.numRows; } /** *

* Returns true if the matrix is symmetric within the tolerance. Only square matrices can be * symmetric. *

*

* A matrix is symmetric if:
* |aij - aji| ≤ tol *

* * @param m A matrix. Not modified. * @param tol Tolerance for how similar two elements need to be. * @return true if it is symmetric and false if it is not. */ public static boolean isSymmetric(FMatrixRMaj m , float tol ) { if( m.numCols != m.numRows ) return false; float max = CommonOps_FDRM.elementMaxAbs(m); for( int i = 0; i < m.numRows; i++ ) { for( int j = 0; j < i; j++ ) { float a = m.get(i,j)/max; float b = m.get(j,i)/max; float diff = Math.abs(a-b); if( !(diff <= tol) ) { return false; } } } return true; } /** *

* Returns true if the matrix is perfectly symmetric. Only square matrices can be symmetric. *

*

* A matrix is symmetric if:
* aij == aji *

* * @param m A matrix. Not modified. * @return true if it is symmetric and false if it is not. */ public static boolean isSymmetric( FMatrixRMaj m ) { return isSymmetric(m,0.0f); } /** *

* Checks to see if a matrix is skew symmetric with in tolerance:
*
* -A = AT
* or
* |aij + aji| ≤ tol *

* * @param A The matrix being tested. * @param tol Tolerance for being skew symmetric. * @return True if it is skew symmetric and false if it is not. */ public static boolean isSkewSymmetric(FMatrixRMaj A , float tol ){ if( A.numCols != A.numRows ) return false; for( int i = 0; i < A.numRows; i++ ) { for( int j = 0; j < i; j++ ) { float a = A.get(i,j); float b = A.get(j,i); float diff = Math.abs(a+b); if( !(diff <= tol) ) { return false; } } } return true; } /** * Checks to see if the two matrices are inverses of each other. * * @param a A matrix. Not modified. * @param b A matrix. Not modified. */ public static boolean isInverse(FMatrixRMaj a , FMatrixRMaj b , float tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } int numRows = a.numRows; int numCols = a.numCols; for( int i = 0; i < numRows; i++ ) { for( int j = 0; j < numCols; j++ ) { float total = 0; for( int k = 0; k < numCols; k++ ) { total += a.get(i,k)*b.get(k,j); } if( i == j ) { if( !(Math.abs(total-1) <= tol) ) return false; } else if( !(Math.abs(total) <= tol) ) return false; } } return true; } /** *

* Checks to see if each element in the two matrices are within tolerance of * each other: tol ≥ |aij - bij|. *

* *

* NOTE: If any of the elements are not countable then false is returned.
* NOTE: If a tolerance of zero is passed in this is equivalent to calling * {@link #isEquals(FMatrixD1, FMatrixD1)} *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param tol How close to being identical each element needs to be. * @return true if equals and false otherwise. */ public static boolean isEquals(FMatrixD1 a , FMatrixD1 b , float tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } if( tol == 0.0f ) return isEquals(a,b); final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !(tol >= Math.abs(a.get(i) - b.get(i))) ) { return false; } } return true; } /** *

* Checks to see if each element in the upper or lower triangular portion of the two matrices are within tolerance of * each other: tol ≥ |aij - bij|. *

* *

* NOTE: If any of the elements are not countable then false is returned.
* NOTE: If a tolerance of zero is passed in this is equivalent to calling * {@link #isEquals(FMatrixD1, FMatrixD1)} *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param upper true of upper triangular and false for lower. * @param tol How close to being identical each element needs to be. * @return true if equals and false otherwise. */ public static boolean isEqualsTriangle(FMatrix a, FMatrix b, boolean upper, float tol) { if( a.getNumRows() != b.getNumRows() || a.getNumCols() != b.getNumCols() ) { return false; } if( upper ) { for( int i = 0; i < a.getNumRows(); i++ ) { for( int j = i; j < a.getNumCols(); j++ ) { if( Math.abs(a.get(i,j)-b.get(i,j)) > tol ) return false; } } } else { for( int i = 0; i < a.getNumRows(); i++ ) { int end = Math.min(i,a.getNumCols()-1); for( int j = 0; j <= end; j++ ) { if( Math.abs(a.get(i,j)-b.get(i,j)) > tol ) return false; } } } return true; } /** *

* Checks to see if each element in the two matrices are equal: * aij == bij *

* *

* NOTE: If any of the elements are NaN then false is returned. If two corresponding * elements are both positive or negative infinity then they are equal. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @return true if identical and false otherwise. */ public static boolean isEquals(FMatrixD1 a, FMatrixD1 b ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !(a.get(i) == b.get(i)) ) { return false; } } return true; } /** *

* Checks to see if each element in the two matrices are equal: * aij == bij *

* *

* NOTE: If any of the elements are NaN then false is returned. If two corresponding * elements are both positive or negative infinity then they are equal. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @return true if identical and false otherwise. */ public static boolean isEquals(BMatrixRMaj a, BMatrixRMaj b ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !(a.get(i) == b.get(i)) ) { return false; } } return true; } /** *

* Checks to see if each corresponding element in the two matrices are * within tolerance of each other or have the some symbolic meaning. This * can handle NaN and Infinite numbers. *

* *

* If both elements are countable then the following equality test is used:
* |aij - bij| ≤ tol.
* Otherwise both numbers must both be Float.NaN, Float.POSITIVE_INFINITY, or * Float.NEGATIVE_INFINITY to be identical. *

* * @param a A matrix. Not modified. * @param b A matrix. Not modified. * @param tol Tolerance for equality. * @return true if identical and false otherwise. */ public static boolean isIdentical(FMatrixD1 a, FMatrixD1 b , float tol ) { if( a.numRows != b.numRows || a.numCols != b.numCols ) { return false; } if( tol < 0 ) throw new IllegalArgumentException("Tolerance must be greater than or equal to zero."); final int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !UtilEjml.isIdentical(a.get(i),b.get(i), tol)) return false; } return true; } /** *

* Checks to see if a matrix is orthogonal or isometric. *

* * @param Q The matrix being tested. Not modified. * @param tol Tolerance. * @return True if it passes the test. */ public static boolean isOrthogonal(FMatrixRMaj Q , float tol ) { if( Q.numRows < Q.numCols ) { throw new IllegalArgumentException("The number of rows must be more than or equal to the number of columns"); } FMatrixRMaj u[] = CommonOps_FDRM.columnsToVector(Q, null); for( int i = 0; i < u.length; i++ ) { FMatrixRMaj a = u[i]; for( int j = i+1; j < u.length; j++ ) { float val = VectorVectorMult_FDRM.innerProd(a,u[j]); if( !(Math.abs(val) <= tol)) return false; } } return true; } /** * Checks to see if the rows of the provided matrix are linearly independent. * * @param A Matrix whose rows are being tested for linear independence. * @return true if linearly independent and false otherwise. */ public static boolean isRowsLinearIndependent( FMatrixRMaj A ) { // LU decomposition LUDecomposition lu = DecompositionFactory_FDRM.lu(A.numRows,A.numCols); if( lu.inputModified() ) A = A.copy(); if( !lu.decompose(A)) throw new RuntimeException("Decompositon failed?"); // if they are linearly independent it should not be singular return !lu.isSingular(); } /** * Checks to see if the provided matrix is within tolerance to an identity matrix. * * @param mat Matrix being examined. Not modified. * @param tol Tolerance. * @return True if it is within tolerance to an identify matrix. */ public static boolean isIdentity(FMatrixRMaj mat , float tol ) { // see if the result is an identity matrix int index = 0; for( int i = 0; i < mat.numRows; i++ ) { for( int j = 0; j < mat.numCols; j++ ) { if( i == j ) { if( !(Math.abs(mat.get(index++)-1) <= tol) ) return false; } else { if( !(Math.abs(mat.get(index++)) <= tol) ) return false; } } } return true; } /** * Checks to see if every value in the matrix is the specified value. * * @param mat The matrix being tested. Not modified. * @param val Checks to see if every element in the matrix has this value. * @param tol True if all the elements are within this tolerance. * @return true if the test passes. */ public static boolean isConstantVal(FMatrixRMaj mat , float val , float tol ) { // see if the result is an identity matrix int index = 0; for( int i = 0; i < mat.numRows; i++ ) { for( int j = 0; j < mat.numCols; j++ ) { if( !(Math.abs(mat.get(index++)-val) <= tol) ) return false; } } return true; } /** * Checks to see if all the diagonal elements in the matrix are positive. * * @param a A matrix. Not modified. * @return true if all the diagonal elements are positive, false otherwise. */ public static boolean isDiagonalPositive( FMatrixRMaj a ) { for( int i = 0; i < a.numRows; i++ ) { if( !(a.get(i,i) >= 0) ) return false; } return true; } // TODO write this public static boolean isFullRank( FMatrixRMaj a ) { throw new RuntimeException("Implement"); } /** *

* Checks to see if the two matrices are the negative of each other:
*
* aij = -bij *

* * @param a First matrix. Not modified. * @param b Second matrix. Not modified. * @param tol Numerical tolerance. * @return True if they are the negative of each other within tolerance. */ public static boolean isNegative(FMatrixD1 a, FMatrixD1 b, float tol) { if( a.numRows != b.numRows || a.numCols != b.numCols ) throw new IllegalArgumentException("Matrix dimensions must match"); int length = a.getNumElements(); for( int i = 0; i < length; i++ ) { if( !(Math.abs(a.get(i)+b.get(i)) <= tol) ) return false; } return true; } /** *

* Checks to see if a matrix is upper triangular or Hessenberg. A Hessenberg matrix of degree N * has the following property:
*
* aij ≤ 0 for all i < j+N
*
* A triangular matrix is a Hessenberg matrix of degree 0. *

* @param A Matrix being tested. Not modified. * @param hessenberg The degree of being hessenberg. * @param tol How close to zero the lower left elements need to be. * @return If it is an upper triangular/hessenberg matrix or not. */ public static boolean isUpperTriangle(FMatrixRMaj A , int hessenberg , float tol ) { for( int i = hessenberg+1; i < A.numRows; i++ ) { int maxCol = Math.min(i-hessenberg, A.numCols); for( int j = 0; j < maxCol; j++ ) { if( !(Math.abs(A.unsafe_get(i,j)) <= tol) ) { return false; } } } return true; } /** *

* Checks to see if a matrix is lower triangular or Hessenberg. A Hessenberg matrix of degree N * has the following property:
*
* aij ≤ 0 for all i < j+N
*
* A triangular matrix is a Hessenberg matrix of degree 0. *

* @param A Matrix being tested. Not modified. * @param hessenberg The degree of being hessenberg. * @param tol How close to zero the lower left elements need to be. * @return If it is an upper triangular/hessenberg matrix or not. */ public static boolean isLowerTriangle(FMatrixRMaj A , int hessenberg , float tol ) { for( int i = 0; i < A.numRows-hessenberg-1; i++ ) { for( int j = i+hessenberg+1; j < A.numCols; j++ ) { if( !(Math.abs(A.unsafe_get(i,j)) <= tol) ) { return false; } } } return true; } /** * Computes the rank of a matrix using a default tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @return The matrix's rank. */ public static int rank( FMatrixRMaj A ) { return rank(A, UtilEjml.F_EPS*100); } /** * Computes the rank of a matrix using the specified tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @param threshold The numerical threshold used to determine a singular value. * @return The matrix's rank. */ public static int rank(FMatrixRMaj A , float threshold ) { SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows,A.numCols,false,false,true); if( svd.inputModified() ) A = A.copy(); if( !svd.decompose(A) ) throw new RuntimeException("Decomposition failed"); return SingularOps_FDRM.rank(svd, threshold); } /** * Computes the nullity of a matrix using the default tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @return The matrix's nullity. */ public static int nullity( FMatrixRMaj A ) { return nullity(A, UtilEjml.F_EPS*100); } /** * Computes the nullity of a matrix using the specified tolerance. * * @param A Matrix whose rank is to be calculated. Not modified. * @param threshold The numerical threshold used to determine a singular value. * @return The matrix's nullity. */ public static int nullity(FMatrixRMaj A , float threshold ) { SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows,A.numCols,false,false,true); if( svd.inputModified() ) A = A.copy(); if( !svd.decompose(A) ) throw new RuntimeException("Decomposition failed"); return SingularOps_FDRM.nullity(svd,threshold); } /** * Counts the number of elements in A which are not zero. * @param A A matrix * @return number of non-zero elements */ public static int countNonZero(FMatrixRMaj A){ int total = 0; for (int row = 0, index=0; row < A.numRows; row++) { for (int col = 0; col < A.numCols; col++,index++) { if( A.data[index] != 0 ) { total++; } } } return total; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy