All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ejml.dense.row.SingularOps_FDRM Maven / Gradle / Ivy

Go to download

A fast and easy to use dense and sparse matrix linear algebra library written in Java.

There is a newer version: 0.43.1
Show newest version
/*
 * Copyright (c) 2009-2018, Peter Abeles. All Rights Reserved.
 *
 * This file is part of Efficient Java Matrix Library (EJML).
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.ejml.dense.row;

import org.ejml.UtilEjml;
import org.ejml.data.FGrowArray;
import org.ejml.data.FMatrixRMaj;
import org.ejml.dense.row.factory.DecompositionFactory_FDRM;
import org.ejml.dense.row.linsol.qr.SolveNullSpaceQRP_FDRM;
import org.ejml.dense.row.linsol.qr.SolveNullSpaceQR_FDRM;
import org.ejml.dense.row.linsol.svd.SolveNullSpaceSvd_FDRM;
import org.ejml.interfaces.SolveNullSpace;
import org.ejml.interfaces.decomposition.SingularValueDecomposition_F32;

import javax.annotation.Nullable;
import java.util.Arrays;


/**
 * Operations related to singular value decomposition.
 *
 * @author Peter Abeles
 */
public class SingularOps_FDRM {

    /**
     * Returns an array of all the singular values in A sorted in ascending order
     *
     * @param A Matrix. Not modified.
     * @return singular values
     */
    public static float[] singularValues( FMatrixRMaj A ) {
        SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows,A.numCols,false,true,true);

        if( svd.inputModified() ) {
            A = A.copy();
        }
        if( !svd.decompose(A)) {
            throw new RuntimeException("SVD Failed!");
        }

        float sv[] = svd.getSingularValues();
        Arrays.sort(sv,0,svd.numberOfSingularValues());

        // change the ordering to ascending
        for (int i = 0; i < sv.length/2; i++) {
            float tmp = sv[i];
            sv[i] = sv[sv.length-i-1];
            sv[sv.length-i-1] = tmp;
        }

        return sv;
    }

    /**
     * Computes the ratio of the smallest value to the largest. Does not assume
     * the array is sorted first
     * @param sv array
     * @return smallest / largest
     */
    public static float ratioSmallestOverLargest( float []sv ) {
        if( sv.length == 0 )
            return Float.NaN;

        float min = sv[0];
        float max = min;

        for (int i = 1; i < sv.length; i++) {
            float v = sv[i];
            if( v > max )
                max = v;
            else if( v < min )
                min = v;
        }

        return  min/max;
    }

    /**
     * Returns the matrix's rank
     *
     * @param A Matrix. Not modified.
     * @param threshold Tolerance used to determine of a singular value is singular.
     * @return The rank of the decomposed matrix.
     */
    public static int rank( FMatrixRMaj A , float threshold ) {
        SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows,A.numCols,false,true,true);

        if( svd.inputModified() ) {
            A = A.copy();
        }
        if( !svd.decompose(A)) {
            throw new RuntimeException("SVD Failed!");
        }

        float sv[] = svd.getSingularValues();

        int count = 0;
        for (int i = 0; i < sv.length; i++) {
            if( sv[i] >= threshold ) {
                count++;
            }
        }
        return count;
    }

    /**
     * Returns the matrix's rank. Automatic selection of threshold
     *
     * @param A Matrix. Not modified.
     * @return The rank of the decomposed matrix.
     */
    public static int rank( FMatrixRMaj A  ) {
        SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows,A.numCols,false,true,true);

        if( svd.inputModified() ) {
            A = A.copy();
        }
        if( !svd.decompose(A)) {
            throw new RuntimeException("SVD Failed!");
        }

        int N = svd.numberOfSingularValues();
        float sv[] = svd.getSingularValues();

        float threshold = singularThreshold(sv,N);
        int count = 0;
        for (int i = 0; i < sv.length; i++) {
            if( sv[i] >= threshold ) {
                count++;
            }
        }
        return count;
    }

    /**
     * Computes the SVD and sorts singular values in descending order. While easier to use this can reduce performance
     * when performed on small matrices numerous times.
     *
     * U*W*VT = A
     *
     * @param A (Input) Matrix being decomposed
     * @param U (Output) Storage for U. If null then it's ignored.
     * @param sv (Output) sorted list of singular values. Can be null.
     * @param Vt (Output) Storage for transposed V. Can be null.
     */
    public static boolean svd(FMatrixRMaj A, @Nullable FMatrixRMaj U , FGrowArray sv , @Nullable FMatrixRMaj Vt ) {

        boolean needU = U != null;
        boolean needV = Vt != null;

        SingularValueDecomposition_F32 svd =
                DecompositionFactory_FDRM.svd(A.numRows,A.numCols,needU,needV,true);

        if( svd.inputModified() ) {
            A = A.copy();
        }

        if( !svd.decompose(A)) {
            return false;
        }

        int N = Math.min(A.numCols,A.numRows);

        if( needU )
            svd.getU(U,false);
        if( needV )
            svd.getV(Vt,true);

        sv.reshape(N);
        System.arraycopy(svd.getSingularValues(), 0, sv.data, 0, N);

        descendingOrder(U,false,sv.data,N,Vt,true);

        return true;
    }


    /**
     * 

* Adjusts the matrices so that the singular values are in descending order. *

* *

* In most implementations of SVD the singular values are automatically arranged in in descending * order. In EJML this is not the case since it is often not needed and some computations can * be saved by not doing that. *

* * @param U Matrix. Modified. * @param tranU is U transposed or not. * @param W Diagonal matrix with singular values. Modified. * @param V Matrix. Modified. * @param tranV is V transposed or not. */ // TODO the number of copies can probably be reduced here public static void descendingOrder(FMatrixRMaj U , boolean tranU , FMatrixRMaj W , FMatrixRMaj V , boolean tranV ) { int numSingular = Math.min(W.numRows,W.numCols); checkSvdMatrixSize(U, tranU, W, V, tranV); for( int i = 0; i < numSingular; i++ ) { float bigValue=-1; int bigIndex=-1; // find the smallest singular value in the submatrix for( int j = i; j < numSingular; j++ ) { float v = W.get(j,j); if( v > bigValue ) { bigValue = v; bigIndex = j; } } // only swap if the current index is not the smallest if( bigIndex == i) continue; if( bigIndex == -1 ) { // there is at least one uncountable singular value. just stop here break; } float tmp = W.get(i,i); W.set(i,i,bigValue); W.set(bigIndex,bigIndex,tmp); if( V != null ) { swapRowOrCol(V, tranV, i, bigIndex); } if( U != null ) { swapRowOrCol(U, tranU, i, bigIndex); } } } /** *

* Similar to {@link #descendingOrder(FMatrixRMaj, boolean, FMatrixRMaj, FMatrixRMaj, boolean)} * but takes in an array of singular values instead. *

* * @param U Matrix. Modified. * @param tranU is U transposed or not. * @param singularValues Array of singular values. Modified. * @param singularLength Number of elements in singularValues array * @param V Matrix. Modified. * @param tranV is V transposed or not. */ public static void descendingOrder(FMatrixRMaj U , boolean tranU , float singularValues[] , int singularLength , FMatrixRMaj V , boolean tranV ) { // checkSvdMatrixSize(U, tranU, W, V, tranV); for( int i = 0; i < singularLength; i++ ) { float bigValue=-1; int bigIndex=-1; // find the smallest singular value in the submatrix for( int j = i; j < singularLength; j++ ) { float v = singularValues[j]; if( v > bigValue ) { bigValue = v; bigIndex = j; } } // only swap if the current index is not the smallest if( bigIndex == i) continue; if( bigIndex == -1 ) { // there is at least one uncountable singular value. just stop here break; } float tmp = singularValues[i]; singularValues[i] = bigValue; singularValues[bigIndex] = tmp; if( V != null ) { swapRowOrCol(V, tranV, i, bigIndex); } if( U != null ) { swapRowOrCol(U, tranU, i, bigIndex); } } } /** * Checks to see if all the provided matrices are the expected size for an SVD. If an error is encountered * then an exception is thrown. This automatically handles compact and non-compact formats */ public static void checkSvdMatrixSize(FMatrixRMaj U, boolean tranU, FMatrixRMaj W, FMatrixRMaj V, boolean tranV ) { int numSingular = Math.min(W.numRows,W.numCols); boolean compact = W.numRows == W.numCols; if( compact ) { if( U != null ) { if( tranU && U.numRows != numSingular ) throw new IllegalArgumentException("Unexpected size of matrix U"); else if( !tranU && U.numCols != numSingular ) throw new IllegalArgumentException("Unexpected size of matrix U"); } if( V != null ) { if( tranV && V.numRows != numSingular ) throw new IllegalArgumentException("Unexpected size of matrix V"); else if( !tranV && V.numCols != numSingular ) throw new IllegalArgumentException("Unexpected size of matrix V"); } } else { if( U != null && U.numRows != U.numCols ) throw new IllegalArgumentException("Unexpected size of matrix U"); if( V != null && V.numRows != V.numCols ) throw new IllegalArgumentException("Unexpected size of matrix V"); if( U != null && U.numRows != W.numRows ) throw new IllegalArgumentException("Unexpected size of W"); if( V != null && V.numRows != W.numCols ) throw new IllegalArgumentException("Unexpected size of W"); } } private static void swapRowOrCol(FMatrixRMaj M, boolean tran, int i, int bigIndex) { float tmp; if( tran ) { // swap the rows for( int col = 0; col < M.numCols; col++ ) { tmp = M.get(i,col); M.set(i,col,M.get(bigIndex,col)); M.set(bigIndex,col,tmp); } } else { // swap the columns for( int row = 0; row < M.numRows; row++ ) { tmp = M.get(row,i); M.set(row,i,M.get(row,bigIndex)); M.set(row,bigIndex,tmp); } } } /** *

* Returns the null-space from the singular value decomposition. The null space is a set of non-zero vectors that * when multiplied by the original matrix return zero. *

* *

* The null space is found by extracting the columns in V that are associated singular values less than * or equal to the threshold. In some situations a non-compact SVD is required. *

* * @param svd A precomputed decomposition. Not modified. * @param nullSpace Storage for null space. Will be reshaped as needed. Modified. * @param tol Threshold for selecting singular values. Try UtilEjml.F_EPS. * @return The null space. */ public static FMatrixRMaj nullSpace(SingularValueDecomposition_F32 svd , FMatrixRMaj nullSpace , float tol ) { int N = svd.numberOfSingularValues(); float s[] = svd.getSingularValues(); FMatrixRMaj V = svd.getV(null,true); if( V.numRows != svd.numCols() ) { throw new IllegalArgumentException("Can't compute the null space using a compact SVD for a matrix of this size."); } // first determine the size of the null space int numVectors = svd.numCols()-N; for( int i = 0; i < N; i++ ) { if( s[i] <= tol ) { numVectors++; } } // declare output data if( nullSpace == null ) { nullSpace = new FMatrixRMaj(numVectors,svd.numCols()); } else { nullSpace.reshape(numVectors,svd.numCols()); } // now extract the vectors int count = 0; for( int i = 0; i < N; i++ ) { if( s[i] <= tol ) { CommonOps_FDRM.extract(V, i,i+1,0, V.numCols,nullSpace,count++,0); } } for( int i = N; i < svd.numCols(); i++ ) { CommonOps_FDRM.extract(V, i,i+1,0, V.numCols,nullSpace,count++,0); } CommonOps_FDRM.transpose(nullSpace); return nullSpace; } /** * Computes the null space using QR decomposition. This is much faster than using SVD * @param A (Input) Matrix * @param totalSingular Number of singular values * @return Null space */ public static FMatrixRMaj nullspaceQR( FMatrixRMaj A , int totalSingular ) { SolveNullSpaceQR_FDRM solver = new SolveNullSpaceQR_FDRM(); FMatrixRMaj nullspace = new FMatrixRMaj(1,1); if( !solver.process(A,totalSingular,nullspace)) throw new RuntimeException("Solver failed. try SVD based method instead?"); return nullspace; } /** * Computes the null space using QRP decomposition. This is faster than using SVD but slower than QR. * Much more stable than QR though. * @param A (Input) Matrix * @param totalSingular Number of singular values * @return Null space */ public static FMatrixRMaj nullspaceQRP( FMatrixRMaj A , int totalSingular ) { SolveNullSpaceQRP_FDRM solver = new SolveNullSpaceQRP_FDRM(); FMatrixRMaj nullspace = new FMatrixRMaj(1,1); if( !solver.process(A,totalSingular,nullspace)) throw new RuntimeException("Solver failed. try SVD based method instead?"); return nullspace; } /** * Computes the null space using SVD. Slowest bust most stable way to find the solution * * @param A (Input) Matrix * @param totalSingular Number of singular values * @return Null space */ public static FMatrixRMaj nullspaceSVD( FMatrixRMaj A , int totalSingular ) { SolveNullSpace solver = new SolveNullSpaceSvd_FDRM(); FMatrixRMaj nullspace = new FMatrixRMaj(1,1); if( !solver.process(A,totalSingular,nullspace)) throw new RuntimeException("Solver failed. try SVD based method instead?"); return nullspace; } /** *

* The vector associated will the smallest singular value is returned as the null space * of the decomposed system. A right null space is returned if 'isRight' is set to true, * and a left null space if false. *

* * @param svd A precomputed decomposition. Not modified. * @param isRight true for right null space and false for left null space. Right is more commonly used. * @param nullVector Optional storage for a vector for the null space. Modified. * @return Vector in V associated with smallest singular value.. */ public static FMatrixRMaj nullVector(SingularValueDecomposition_F32 svd , boolean isRight , FMatrixRMaj nullVector ) { int N = svd.numberOfSingularValues(); float s[] = svd.getSingularValues(); FMatrixRMaj A = isRight ? svd.getV(null,true) : svd.getU(null,false); if( isRight ) { if( A.numRows != svd.numCols() ) { throw new IllegalArgumentException("Can't compute the null space using a compact SVD for a matrix of this size."); } if( nullVector == null ) { nullVector = new FMatrixRMaj(svd.numCols(),1); } else { nullVector.reshape(svd.numCols(),1); } } else { if (A.numCols != svd.numRows()) { throw new IllegalArgumentException("Can't compute the null space using a compact SVD for a matrix of this size."); } if (nullVector == null) { nullVector = new FMatrixRMaj(svd.numRows(), 1); } else { nullVector.reshape(svd.numRows(), 1); } } int smallestIndex = -1; if( isRight && svd.numCols() > svd.numRows() ) smallestIndex = svd.numCols()-1; else if( !isRight && svd.numCols() < svd.numRows() ) smallestIndex = svd.numRows()-1; else { // find the smallest singular value float smallestValue = Float.MAX_VALUE; for( int i = 0; i < N; i++ ) { if( s[i] < smallestValue ) { smallestValue = s[i]; smallestIndex = i; } } } // extract the null space if( isRight ) SpecializedOps_FDRM.subvector(A,smallestIndex,0,A.numRows,true,0,nullVector); else SpecializedOps_FDRM.subvector(A,0,smallestIndex,A.numRows,false,0,nullVector); return nullVector; } /** * Returns a reasonable threshold for singular values.

* * tol = max (size (A)) * largest sigma * eps; * * @param svd A precomputed decomposition. Not modified. * @return threshold for singular values */ public static float singularThreshold( SingularValueDecomposition_F32 svd ) { return singularThreshold(svd,UtilEjml.F_EPS); } public static float singularThreshold( SingularValueDecomposition_F32 svd , float tolerance ) { float w[]= svd.getSingularValues(); int N = svd.numberOfSingularValues(); return singularThreshold( w, N, tolerance); } private static float singularThreshold( float[] w, int N) { return singularThreshold(w, N, UtilEjml.F_EPS ); } private static float singularThreshold( float[] w, int N , float tolerance ) { float largest = 0; for(int j = 0; j < N; j++ ) { if( w[j] > largest) largest = w[j]; } return N*largest*tolerance; } /** * Extracts the rank of a matrix using a preexisting decomposition and default threshold. * * @see #singularThreshold(SingularValueDecomposition_F32) * * @param svd A precomputed decomposition. Not modified. * @return The rank of the decomposed matrix. */ public static int rank( SingularValueDecomposition_F32 svd ) { float threshold = singularThreshold(svd); return rank(svd,threshold); } /** * Extracts the rank of a matrix using a preexisting decomposition. * * @see #singularThreshold(SingularValueDecomposition_F32) * * @param svd A precomputed decomposition. Not modified. * @param threshold Tolerance used to determine of a singular value is singular. * @return The rank of the decomposed matrix. */ public static int rank(SingularValueDecomposition_F32 svd , float threshold ) { int numRank=0; float w[]= svd.getSingularValues(); int N = svd.numberOfSingularValues(); for( int j = 0; j < N; j++ ) { if( w[j] > threshold) numRank++; } return numRank; } /** * Extracts the nullity of a matrix using a preexisting decomposition and default threshold. * * @see #singularThreshold(SingularValueDecomposition_F32) * * @param svd A precomputed decomposition. Not modified. * @return The nullity of the decomposed matrix. */ public static int nullity( SingularValueDecomposition_F32 svd ) { float threshold = singularThreshold(svd); return nullity(svd, threshold); } /** * Extracts the nullity of a matrix using a preexisting decomposition. * * @see #singularThreshold(SingularValueDecomposition_F32) * * @param svd A precomputed decomposition. Not modified. * @param threshold Tolerance used to determine of a singular value is singular. * @return The nullity of the decomposed matrix. */ public static int nullity(SingularValueDecomposition_F32 svd , float threshold ) { int ret = 0; float w[]= svd.getSingularValues(); int N = svd.numberOfSingularValues(); int numCol = svd.numCols(); for( int j = 0; j < N; j++ ) { if( w[j] <= threshold) ret++; } return ret + numCol-N; } /** * Returns the matrix's nullity * * @param A Matrix. Not modified. * @param threshold Tolerance used to determine of a singular value is singular. * @return nullity */ public static int nullity( FMatrixRMaj A , float threshold ) { SingularValueDecomposition_F32 svd = DecompositionFactory_FDRM.svd(A.numRows,A.numCols,false,true,true); if( svd.inputModified() ) { A = A.copy(); } if( !svd.decompose(A)) { throw new RuntimeException("SVD Failed!"); } float sv[] = svd.getSingularValues(); int count = 0; for (int i = 0; i < sv.length; i++) { if( sv[i] <= threshold ) { count++; } } return count; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy